Vis enkel innførsel

dc.contributor.advisorPettersen, Kristin Ytterstadnb_NO
dc.contributor.authorEngelhardtsen, Øysteinnb_NO
dc.date.accessioned2014-12-19T14:02:07Z
dc.date.available2014-12-19T14:02:07Z
dc.date.created2010-09-04nb_NO
dc.date.issued2007nb_NO
dc.identifier348457nb_NO
dc.identifierntnudaim:3362nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259834
dc.description.abstractAn underlying requirement for any Autonomous Underwater Vehicle (AUV) is to navigate through unknown or partly unknown environments while performing certain user specified tasks. The loss of an AUV due to collision is unjustifiable both in terms of cost and replacement time. To prevent such an unfortunate event, one requires a robust and effective Collision Avoidance System (CAS). This paper discusses the collision avoidance problem for the HUGIN AUVs. In the first part, a complete simulator for the HUGIN AUV is implemented in matlab and simulink. This includes a 6 degrees-of-freedom nonlinear AUV model, simulated environment including bottom profile and surface ice, navigation- and guidance functionality and sensor simulators. In the second part a number of well known strategies for the collision avoidance problem is presented with a short analysis of their properties. On the basis of the implemented simulator, a proposed CAS is developed and it’s performance is analyzed. This system is based on simple principles and known collision avoidance strategies, in order to provide effective and robust performance. The proposed system provides feasible solutions during all simulations and the collision avoidance maneuvers are performed in accordance with the specified user demands. The developed simulator and collision avoidance system is expected to provide a suitable framework for further development and possibly a physical implementation on the HUGIN AUVs.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for teknisk kybernetikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE3 teknisk kybernetikkno_NO
dc.subjectReguleringsteknikkno_NO
dc.title3D AUV Collision Avoidancenb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber104nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel