Show simple item record

dc.contributor.advisorHovd, Mortennb_NO
dc.contributor.authorHolter, Eriknb_NO
dc.date.accessioned2014-12-19T14:02:03Z
dc.date.available2014-12-19T14:02:03Z
dc.date.created2010-09-03nb_NO
dc.date.issued2010nb_NO
dc.identifier347983nb_NO
dc.identifierntnudaim:5387nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259812
dc.description.abstractThis thesis illustrates different control structures and tries to demonstrate how feedforward control can be used in stabilizing an unstable ammonia reactor with heat integration. The demonstration of feedforward is done under very special circumstances. While feedback control is necessary for stabilization of the reactor system, feedforward control can be used to avoid input constraints which would otherwise make the input saturate and thereby make the system unstable. It turned out that the ammonia reactor was not the best system to apply the feedforward strategies in question. The main reason is a combination of; the existence of the lower (undesired) steady-state operating point (corresponds to extinction of reaction), positive feedback from the heat exchanger and the manipulated variable range of actuation. The reason is that there are trade offs between making more of the (cold stream) mass flow go through the heat exchanger and making the cold stream mass flow get mixed with the reactor flow between the beds at the quench points. Letting more mass flow entering the heat exchanger will reduce the heat exchanger efficiency. Lowering the efficiency means that the hot stream mass flow through the heat exchanger can not liberate enough heat to the cold stream mass flow entering the heat exchanger. As a result of this, the reactor inlet temperature will decrease because of the positive feedback from the heat exchanger. Thus, it does not exist a range of actuation where the system can be stabilized when influenced by disturbance.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for teknisk kybernetikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE3 teknisk kybernetikkno_NO
dc.subjectReguleringsteknikkno_NO
dc.titleFeedforward for Stabilization of an Ammonia Synthesis Reactornb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber82nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record