Vis enkel innførsel

dc.contributor.advisorGravdahl, Jan Tommynb_NO
dc.contributor.advisorHovd, Mortennb_NO
dc.contributor.authorJohannessen, Morten Krøtøynb_NO
dc.contributor.authorMyrvold, Torgeirnb_NO
dc.date.accessioned2014-12-19T14:02:01Z
dc.date.available2014-12-19T14:02:01Z
dc.date.created2010-09-03nb_NO
dc.date.issued2010nb_NO
dc.identifier347977nb_NO
dc.identifierntnudaim:5343nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259796
dc.description.abstractThe main focus of this thesis is aspects in the development of a system for prevention of stick-slip oscillations in drill strings that are used for drilling oil wells. Stick-slip is mainly caused by elasticity of the drill string and changing frictional forces at the bit; static frictional forces are higher than the kinetic frictional forces which make the bit act in a manner where it sticks and then slips, called stick-slip. Stick-slip leads to excessive bit wear, premature tool failures and a poor rate of penetration. A model predictive controller (MPC) should be a suitable remedy for this problem; MPC has gained great success in constrained control problems where tight control is needed. Friction is a highly nonlinear phenomenon and for that reason is it obvious that a nonlinear model is preferred to be used in the MPC to get prime control. Obviously it is of great importance that the internal model used in the MPC is of a certain quality, and as National Oilwell Varco (NOV) has developed a nonlinear drill string model in Simulink, it will be useful to check over this model. This model was therefore verified with a code-to-code comparison and validated using logging data provided from NOV. As the model describing the dynamics of the drill string is somewhat large, a nonlinear model reduction is needed due to the computational complexity of solving a nonlinear model predictive control problem. This nonlinear model reduction is based on the technique of balancing the empirical Gramians, a method that has proven to be successful for a variety of systems. A nonlinear drill string model has been reduced and implemented to a nonlinear model predictive controller (NMPC) and simulated for different scenarios; all proven that NMPC is able to cope with the stick-slip problem. Comparisons have been made with a linear MPC and an existing stick-slip prevention system, SoftSpeed, developed by National Oilwell Varco.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for teknisk kybernetikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE3 teknisk kybernetikkno_NO
dc.subjectReguleringsteknikkno_NO
dc.titleStick-Slip Prevention of Drill Strings Using Nonlinear Model Reduction and Nonlinear Model Predictive Controlnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber107nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel