Vis enkel innførsel

dc.contributor.authorSalman, Ata ul Rauf
dc.contributor.authorHyrve, Signe Marit
dc.contributor.authorRegli, Samuel K.
dc.contributor.authorZubair, Muhammad
dc.contributor.authorEnger, Bjørn Christian
dc.contributor.authorLødeng, Rune
dc.contributor.authorwaller, david
dc.contributor.authorRønning, Magnus
dc.identifier.citationCatalysts. 2019, 9 1-11.nb_NO
dc.description.abstractAbstract Nitric acid (HNO3) is an important building block in the chemical industry. Industrial production takes place via the Ostwald process, where oxidation of NO to NO2 is one of the three chemical steps. The reaction is carried out as a homogeneous gas phase reaction. Introducing a catalyst for this reaction can lead to significant process intensification. A series of LaCo1−xMnxO3 (x = 0, 0.25, 0.5 and 1) and LaCo1−yNiyO3 (y = 0, 0.25, 0.50, 0.75 and 1) were synthesized by a sol-gel method and characterized using N2 adsorption, ex situ XRD, in situ XRD, SEM and TPR. All samples had low surface areas; between 8 and 12 m2/g. The formation of perovskites was confirmed by XRD. The crystallite size decreased linearly with the degree of substitution of Mn/Ni for partially doped samples. NO oxidation activity was tested using a feed (10% NO and 6% O2) that partly simulated nitric acid plant conditions. Amongst the undoped perovskites, LaCoO3 had the highest activity; with a conversion level of 24.9% at 350 °C; followed by LaNiO3 and LaMnO3. Substitution of LaCoO3 with 25% mol % Ni or Mn was found to be the optimum degree of substitution leading to an enhanced NO oxidation activity. The results showed that perovskites are promising catalysts for NO oxidation at industrial conditions.nb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleCatalytic Oxidation of NO over LaCo1−xBxO3 (B = Mn, Ni) Perovskites for Nitric Acid Productionnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.relation.projectNorges forskningsråd: 237922nb_NO
dc.relation.projectNorges forskningsråd: 273608nb_NO
dc.description.localcode© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
cristin.unitnameInstitutt for kjemisk prosessteknologi

Tilhørende fil(er)


Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal