Vis enkel innførsel

dc.contributor.authorDepover, Tom
dc.contributor.authorHajilou, Tarlan
dc.contributor.authorWan, Di
dc.contributor.authorWang, Dong
dc.contributor.authorBarnoush, Afrooz
dc.contributor.authorVerbeken, Kim
dc.date.accessioned2019-05-08T11:12:56Z
dc.date.available2019-05-08T11:12:56Z
dc.date.created2019-04-23T14:43:33Z
dc.date.issued2019
dc.identifier.citationMaterials Science & Engineering: A. 2019, 754 613-621.nb_NO
dc.identifier.issn0921-5093
dc.identifier.urihttp://hdl.handle.net/11250/2596976
dc.description.abstractThe present study evaluates the hydrogen induced damage by in-situ hydrogen plasma charging in dual phase (DP) steel. Cold deformation of 15% is applied on the material to change microstructural defects, such as dislocation density. The susceptibility to hydrogen embrittlement is hence evaluated for two material conditions, i.e. DP 0% and DP 15%. Small scale tensile tests are done inside an ESEM chamber for which in-situ hydrogen plasma charging is compared with electrochemical hydrogen charging while uncharged samples serve as a reference. Generally, the hydrogen effect on the ductility and stress level is increased when deformation is applied, due to the hydrogen trapping ability of the deformation induced defects, as confirmed by thermal desorption spectroscopy. Complementary in-situ electrochemical nanoindentation tests verify the more pronounced hardness increase due to hydrogen when cold deformation is applied. A slightly increased ductility loss is observed when the samples are charged electrochemically, although similar tendencies are found for both hydrogen charging procedures. These observations are confirmed by the fractographic analysis, where the detrimental role of MnS inclusions in the segregation line on hydrogen induced cracking is demonstrated as well.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAssessment of the potential of hydrogen plasma charging as compared to conventional electrochemical hydrogen charging on dual phase steel.nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber613-621nb_NO
dc.source.volume754nb_NO
dc.source.journalMaterials Science & Engineering: Anb_NO
dc.identifier.doihttps://doi.org/10.1016/j.msea.2019.03.097
dc.identifier.cristin1693505
dc.description.localcode© 2019. This is the authors’ accepted and refereed manuscript to the article. Locked until 27.3.2021 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,92,0
cristin.unitnameInstitutt for maskinteknikk og produksjon
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal