Show simple item record

dc.contributor.advisorBreivik, Mortennb_NO
dc.contributor.advisorHovstein, Vegard Evjennb_NO
dc.contributor.authorLoe, Øivind Aleksander G.nb_NO
dc.date.accessioned2014-12-19T14:01:46Z
dc.date.available2014-12-19T14:01:46Z
dc.date.created2010-09-03nb_NO
dc.date.issued2008nb_NO
dc.identifier347606nb_NO
dc.identifierntnudaim:4083nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259696
dc.description.abstractConsiderable progress has been achieved in recent years with respect to autonomous vehicles. A good example is the DARPA Grand Challenge, a competition for autonomous ground vehicles. None of the competing vehicles managed to complete the challenge in 2004, but returning in 2005, a total of five vehicles were successful. Effective collision avoidance is a requirement for autonomous navigation, and even though much progress has been done, it still remains an open problem. The focus of this thesis is on the development of a collision avoidance system for unmanned surface vehicles (USVs), which is compliant with the International Regulations for Avoiding Collisions at Sea (COLREGS). The system is based on a modified version of the Dynamic Window algorithm, taking both acceleration and lateral speeds into account for reactive collision avoidance. Path planning is provided by the Rapidly-Exploring Random Tree (RRT) algorithm, extended to use the A* algorithm as a guide, which significantly increases its efficiency. Extensive simulations have been performed in order to determine the value of the modifications done to the original algorithms, as well as the performance of the total control system. Full-scale experiments have also been carried out in an attempt to verify the results from the simulations. The collision avoidance system performed very well during the simulations, finding near-optimal paths through the environment and evading other vessels in a COLREGS-compliant fashion. In the full-scale experiments, important sensor data was erroneous, resulting in reduced avoidance margins. However, the collision avoidance system still kept the controlled vessel safe, showing significant robustness.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for teknisk kybernetikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE3 teknisk kybernetikkno_NO
dc.subjectReguleringsteknikkno_NO
dc.titleCollision Avoidance for Unmanned Surface Vehiclesnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber141nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record