Vis enkel innførsel

dc.contributor.authorMassrur, Hamid Reza
dc.contributor.authorNiknam, Taher
dc.contributor.authorAghaei, Jamshid
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorCatalao, Joao PS
dc.date.accessioned2019-04-30T10:59:45Z
dc.date.available2019-04-30T10:59:45Z
dc.date.created2019-01-08T13:30:34Z
dc.date.issued2018
dc.identifier.citationIEEE Transactions on Sustainable Energy. 2018, 9 (4), 1565-1577.nb_NO
dc.identifier.issn1949-3029
dc.identifier.urihttp://hdl.handle.net/11250/2596123
dc.description.abstractIn this paper, a new decomposing strategy is proposed to solve the power flow problem in the large-scale multienergy carrier (MEC) systems, including gas, electrical, and heating subnetworks. This strategy has been equipped with a novel noniterative method named holomorphic embedding (HE) to solve the energy flow of the electrical subnetwork. Moreover, it benefits from the less-computational graph method for solving the energy flows of the heating subnetwork. The HE method unlike initial-guess iterative methods guarantees to find the power flow solution, if there is a solution. In addition, it finds only the operational power flow solution without concern about the convergence of the solution. In the proposed strategy, the decomposing method decouples various energy flows of subnetworks without losing the major benefits of the simultaneous analysis of the subnetworks and losing accuracy. Moreover, the proposed decomposing strategy has more reliability and faster computation time than the Newton-Raphson technique. In order to demonstrate the efficiency and superiority of the proposed decomposing strategy on solving large-scale MEC systems, the strategy is tested on three large-scale case studies.nb_NO
dc.language.isoengnb_NO
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)nb_NO
dc.titleFast Decomposed Energy Flow in Large-Scale Integrated Electricity-Gas-Heat Energy Systemsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber1565-1577nb_NO
dc.source.volume9nb_NO
dc.source.journalIEEE Transactions on Sustainable Energynb_NO
dc.source.issue4nb_NO
dc.identifier.doi10.1109/TSTE.2018.2795755
dc.identifier.cristin1652436
dc.relation.projectEU/731148nb_NO
dc.description.localcode© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.nb_NO
cristin.unitcode194,63,20,0
cristin.unitnameInstitutt for elkraftteknikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel