Show simple item record

dc.contributor.advisorGravdahl, Jan Tommynb_NO
dc.contributor.authorTønne, Karianne Knutsennb_NO
dc.date.accessioned2014-12-19T14:01:30Z
dc.date.available2014-12-19T14:01:30Z
dc.date.created2010-09-03nb_NO
dc.date.issued2007nb_NO
dc.identifier347457nb_NO
dc.identifierntnudaim:3338nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/259608
dc.description.abstractThis thesis is a part of the SSETI (Student Space Exploration Technology Initiative) project, where students from several universities around Europe work together with the European Space Agency (ESA) with designing, building, testing and launching an Earth-Moon satellite orbiter (European Student Moon Orbiter (ESMO). A satellite model with reaction wheels placed in tetrahedron was deduced in a preliminary study together with an extended Kalman filter to estimate the attitude from star measurements. The stability and convergence properties of this system are studied in this thesis. Previous studies on the convergence of extended Kalman filter are presented and a proof of exponentially convergence of a system with extended Kalman filter is given and used to prove that ESMO with the extended Kalman filter converges exponentially. The most recent work and different methods to apply a nonlinear separation principle is presented. Three feedback controllers with proof of global asymptotic stability (GAS) is then introduced and implemented on ESMO. Based upon the global asymptotic stability of the feedback controllers, and the proof that the extended Kalman filter works as an exponentially observer, a nonlinear separation principle is deduced. The closed loop system can then be stated globally asymptotically stable based upon the deduced separation principle. The closed loop with the three different controllers is then simulated in Simulink for varying gains and different reference steps. The three controllers show stable characteristic as the theory implies. The robust controller shows best tracking and estimation properties, it is very accurate, simple, robust and adaptable to environmentally changes, and is therefore proposed as the most suitable controller for ESMO.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for teknisk kybernetikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE3 teknisk kybernetikkno_NO
dc.subjectReguleringsteknikkno_NO
dc.titleStability Analysis of EKF - based Attitude Determination and Controlnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber120nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for teknisk kybernetikknb_NO


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record