Vis enkel innførsel

dc.contributor.authorRøyne, Anja
dc.contributor.authorPhua, Yi Jing
dc.contributor.authorLe, Simone Balzer
dc.contributor.authorEikjeland, Ina Grosås
dc.contributor.authorJosefsen, Kjell Domaas
dc.contributor.authorMarkussen, Sidsel
dc.contributor.authorMyhr, Anders
dc.contributor.authorThrone-Holst, Harald
dc.contributor.authorSikorski, Pawel
dc.contributor.authorWentzel, Alexander
dc.date.accessioned2019-04-25T07:49:06Z
dc.date.available2019-04-25T07:49:06Z
dc.date.created2019-04-23T14:07:10Z
dc.date.issued2019
dc.identifier.citationPLoS ONE. 2019, 14 (4), .nb_NO
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11250/2595378
dc.description.abstractThe production of concrete for construction purposes is a major source of anthropogenic CO2 emissions. One promising avenue towards a more sustainable construction industry is to make use of naturally occurring mineral-microbe interactions, such as microbial-induced carbonate precipitation (MICP), to produce solid materials. In this paper, we present a new process where calcium carbonate in the form of powdered limestone is transformed to a binder material (termed BioZEment) through microbial dissolution and recrystallization. For the dissolution step, a suitable bacterial strain, closely related to Bacillus pumilus, was isolated from soil near a limestone quarry. We show that this strain produces organic acids from glucose, inducing the dissolution of calcium carbonate in an aqueous slurry of powdered limestone. In the second step, the dissolved limestone solution is used as the calcium source for MICP in sand packed syringe moulds. The amounts of acid produced and calcium carbonate dissolved are shown to depend on the amount of available oxygen as well as the degree of mixing. Precipitation is induced through the pH increase caused by the hydrolysis of urea, mediated by the enzyme urease, which is produced in situ by the bacterium Sporosarcina pasteurii DSM33. The degree of successful consolidation of sand by BioZEment was found to depend on both the amount of urea and the amount of glucose available in the dissolution reaction.nb_NO
dc.language.isoengnb_NO
dc.publisherPublic Library of Science (PLOS)nb_NO
dc.relation.urihttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212990
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTowards a low CO2 emission building material employing bacterial metabolism (1/2): The bacterial system and prototype productionnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber24nb_NO
dc.source.volume14nb_NO
dc.source.journalPLoS ONEnb_NO
dc.source.issue4nb_NO
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0212990
dc.identifier.cristin1693482
dc.relation.projectNorges forskningsråd: 238849nb_NO
dc.description.localcodeOpen Access. Research accepted by PLOS journals is published under a CC BY license. Anyone may reuse the article with proper attribution.nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal