Show simple item record

dc.contributor.authorLi, Yue
dc.contributor.authorHolmedal, Bjørn
dc.contributor.authorLi, Hongxiang
dc.contributor.authorZhuang, Linzhong
dc.contributor.authorZhang, Jishan
dc.contributor.authorDu, Qiang
dc.date.accessioned2019-04-10T07:37:35Z
dc.date.available2019-04-10T07:37:35Z
dc.date.created2019-01-14T11:14:11Z
dc.date.issued2018
dc.identifier.citationMaterialia. 2018, 4 431-443.nb_NO
dc.identifier.issn2589-1529
dc.identifier.urihttp://hdl.handle.net/11250/2593942
dc.description.abstractFor an ICME (Integrated Computational Material Engineering) modeling framework used for the age-hardening aluminum alloy design and heat treatment parameters optimization, it is critical to take into account the geometric shape of precipitates, as it is tightly related to the precipitation kinetics and particles' hardening effect. The aim of this paper is to present such an ICME modeling approach to describe the precipitation of disk-shaped hardening particles during aging treatment and predict the final yield strength. The classical Kampmann–Wagner Numerical (KWN) model is extended to consider the influence of disk-shaped particle morphology on growth kinetics. The extension consists of two correction factors to the growth rate equation and to the Gibbs-Thomson effect. The extended model, coupled with a metastable thermodynamic database, is applied to simulate precipitation kinetics of Al-Cu and Al-Mg-Zn alloys during aging treatment. The predicted microstructural features are in reasonable agreement with the reported experimental observations. Furthermore, a strengthening model for disk-shaped particles, which considers the size distributions of precipitates, is developed. The predicted yield strengths are compared with reported tensile test results and with predictions from other strength models. Unlike other models, the proposed strength model can reveal the strength contribution from disk-shaped precipitates without an additional tuning parameter for accounting for the impact of the mean particle spacing in the slip plane.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.titlePrecipitation and strengthening modeling for disk-shaped particles in aluminum alloys: Size distribution considerednb_NO
dc.typeJournal articlenb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber431-443nb_NO
dc.source.volume4nb_NO
dc.source.journalMaterialianb_NO
dc.identifier.doihttps://doi.org/10.1016/j.mtla.2018.11.001
dc.identifier.cristin1656058
dc.relation.projectNorges forskningsråd: 247783nb_NO
dc.description.localcodePublisher embargo until December 2020 (c) This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record