• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Bayesian model for the dependence structure in binary Markov random fields.

Frøysa, Cecilie Drabløs
Master thesis
Thumbnail
View/Open
749359_FULLTEXT01.pdf (1.274Mb)
749359_COVER01.pdf (184.1Kb)
URI
http://hdl.handle.net/11250/259394
Date
2014
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1455]
Abstract
In this thesis a reversible jump Markov chain Monte Carlo (MCMC) method for simulation of the graph structure of a binary Markov random field (MRF) is presented. The reversible jump MCMC method allows for simulation of both the graph structure and the parameter values of the MRF. First a Bayesian model for the problem is described. The prior model used is a slightly altered version of the spike and slab prior used by Chen and Welling (2012). Next the algorithm for simulation is presented and the method is then tested for simulated datasets of different sized based on two example graphs. The algorithm is able to find models that give good fits to most of the datasets, but we see signs of the algorithm not converging properly.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit