Show simple item record

dc.contributor.authorSolemslie, Bjørn Winther
dc.contributor.authorTrivedi, Chirag
dc.contributor.authorAgnalt, Einar
dc.contributor.authorDahlhaug, Ole Gunnar
dc.date.accessioned2019-04-02T12:35:12Z
dc.date.available2019-04-02T12:35:12Z
dc.date.created2019-03-27T19:45:07Z
dc.date.issued2019
dc.identifier.issn1755-1307
dc.identifier.urihttp://hdl.handle.net/11250/2592956
dc.description.abstractThe Norwegian power system today includes a relatively large percentage of Francis turbines with a head of above 300m, in the world. This leads to a need to maintain and develop the national competence regarding the challenges connected to this type of turbine. The importance of this competence is increased by the fact that these turbines have a high installed capacity and are therefore crucial to the production stability. In the later years the old runners in Norwegian high head power plants have begun to show signs of fatigue. Taking the average age of these runners, which is approaching 45 years, into account, this may not be surprising. The surprising fact is that the same signs of fatigue, and in some cases total breakdown due to cracks, also occur in new and modern Francis runners. This leads to a hypothesis that the problem stems from sources other than the turbine runners themselves. The suspected cause of this reduction in the expected lifetime is the change the pattern of turbine operation to accommodate new intermittent energy in the power system and progress in the manufacturing technology enabling thinner blades. As an example the Horizon2020 project HydroFLEX initialised by the European Union aim to produce technology that allows for 30 start-stops per day for Francis runner. A research project funded by the Norwegian Research Council and the Norwegian Hydro Power Industry, aim to increase the available knowledge regarding these high head Francis turbines. The research is done both on a basic and applied level where the focus is to increase the knowledge of the phenomena and to produce validation data for numerical simulations of said phenomena. The fundamental research focus on the hydrodynamic dampening applied on a hydrofoil within a high velocity water flow. The applied research is focused on the Francis-99 runner, a model runner of a High Head Francis turbine, which has been instrumented in order to study the Rotor-Stator-Interaction(RSI) and the structural response of the runner. The research areas both consist experimental and numerical studies, where the experimental results are used to validate the numerical. This paper presents the background of the project, the different activities and some preliminary results from selected activities. The aim of the paper is to introduce the project, participants and the participants view on the future of High Head Francis runners that do not crack due to RSI.nb_NO
dc.language.isoengnb_NO
dc.publisherIOP Publishingnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePressure Pulsations and Fatigue Loads in High Head Francis Turbinesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.volume240nb_NO
dc.source.journalIOP Conference Series: Earth and Environmentnb_NO
dc.identifier.doi10.1088/1755-1315/240/2/022039
dc.identifier.cristin1688379
dc.relation.projectNorges forskningsråd: 254987nb_NO
dc.description.localcodeContent from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal