Vis enkel innførsel

dc.contributor.authorWang, Lu
dc.contributor.authorVullum, Per Erik
dc.contributor.authorAsheim, Karina
dc.contributor.authorWang, Xuehang
dc.contributor.authorSvensson, Ann Mari
dc.contributor.authorVullum-Bruer, Fride
dc.date.accessioned2019-03-14T13:30:56Z
dc.date.available2019-03-14T13:30:56Z
dc.date.created2018-07-05T12:20:48Z
dc.date.issued2018
dc.identifier.citationNano Energy. 2018, 48 227-237.nb_NO
dc.identifier.issn2211-2855
dc.identifier.urihttp://hdl.handle.net/11250/2590072
dc.description.abstractMg batteries are one of several new battery technologies expected to partially substitute lithium-based batteries in the future due to the lower cost and higher safety. However, the development of Mg batteries has been greatly hindered by the sluggish Mg migration kinetics in the solid state. Here, we exploit a high performance cathode for Mg battery based on a tailored nanocomposite, synthesized by in-situ growth of nanocrystalline Mn3O4 on graphene substrates, which provides high reversible capacities (~ 220 mA h g−1 at 15.4 mA g−1 and ~ 80 mA h g−1 at 1.54 A g−1), good rate performance (high reversibility at various current rates), and excellent cycling stability (no capacity decay after 700 hundred cycles). The magnesiation mechanism in our cell system has been identified as a combination of capacitive processes and diffusion-controlled reactions involving electrolyte solvents. Characterization is performed by ex-situ transmission electron microscopy (TEM)/scanning TEM (STEM), energy dispersive spectroscopy (EDS), electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) in addition to quantitative kinetics analysis. Exploiting the high-performance capacitive-type electrodes, where the specific capacity is limited by the kinetics of surface processes and not by bulk Mg ion diffusion governing the properties of conventional intercalation-type electrodes, could reveal a new approach to developing commercially viable Mg batteries.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleHigh capacity Mg batteries based on surface-controlled electrochemical reactionsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber227-237nb_NO
dc.source.volume48nb_NO
dc.source.journalNano Energynb_NO
dc.identifier.doi10.1016/j.nanoen.2018.03.061
dc.identifier.cristin1595879
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 23.03.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,35,0
cristin.unitcode194,66,20,0
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for materialteknologi
cristin.unitnameInstitutt for fysikk
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal