Vis enkel innførsel

dc.contributor.authorJunker, Rune Grønborg
dc.contributor.authorAzar, Armin Ghasem
dc.contributor.authorLopes, Rui
dc.contributor.authorLindberg, Karen Byskov
dc.contributor.authorReynders, Glenn
dc.contributor.authorRelan, Rishi
dc.contributor.authorMadsen, Henrik
dc.date.accessioned2019-03-06T13:18:40Z
dc.date.available2019-03-06T13:18:40Z
dc.date.created2018-05-15T13:07:49Z
dc.date.issued2018
dc.identifier.citationApplied Energy. 2018, 225 175-182.nb_NO
dc.identifier.issn0306-2619
dc.identifier.urihttp://hdl.handle.net/11250/2589042
dc.description.abstractThe large penetration rate of renewable energy sources leads to challenges in planning and controlling the energy production, transmission, and distribution in power systems. A potential solution is found in a paradigm shift from traditional supply control to demand control. To address such changes, a first step lays in a formal and robust characterization of the energy flexibility on the demand side. The most common way to characterize the energy flexibility is by considering it as a static function at every time instant. The validity of this approach is questionable because energy-based systems are never at steady-state. Therefore, in this paper, a novel methodology to characterize the energy flexibility as a dynamic function is proposed, which is titled as the Flexibility Function. The Flexibility Function brings new possibilities for enabling the grid operators or other operators to control the demand through the use of penalty signals (e.g., price, CO2, etc.). For instance, CO2-based controllers can be used to accelerate the transition to a fossil-free society. Contrary to previous static approaches to quantify Energy Flexibility, the dynamic nature of the Flexibility Function enables a Flexibility Index, which describes to which extent a building is able to respond to the grid’s need for flexibility. In order to validate the proposed methodologies, a case study is presented, demonstrating how different Flexibility Functions enable the utilization of the flexibility in different types of buildings, which are integrated with renewable energies.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCharacterizing the energy flexibility of buildings and districtsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber175-182nb_NO
dc.source.volume225nb_NO
dc.source.journalApplied Energynb_NO
dc.identifier.doi10.1016/j.apenergy.2018.05.037
dc.identifier.cristin1585136
dc.relation.projectNorges forskningsråd: 257660nb_NO
dc.description.localcode© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/)nb_NO
cristin.unitcode194,63,20,0
cristin.unitcode194,0,0,0
cristin.unitnameInstitutt for elkraftteknikk
cristin.unitnameNorges teknisk-naturvitenskapelige universitet
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal