Show simple item record

dc.contributor.authorMeneghetti, Giovanni
dc.contributor.authorCampagnolo, Alberto
dc.contributor.authorBerto, Filippo
dc.contributor.authorTanaka, Keisuke
dc.date.accessioned2019-02-26T11:42:34Z
dc.date.available2019-02-26T11:42:34Z
dc.date.created2018-11-13T14:16:12Z
dc.date.issued2018
dc.identifier.citationTheoretical and applied fracture mechanics (Print). 2018, 96 509-533.nb_NO
dc.identifier.issn0167-8442
dc.identifier.urihttp://hdl.handle.net/11250/2587441
dc.description.abstractThe fatigue life of notched components subjected to multiaxial loading conditions may be influenced by extrinsic mechanisms operating during crack propagation phase, such as sliding contact, friction and meshing between crack surfaces. These extrinsic mechanisms may disrupt the applicability of local approaches, such as that based on the strain energy density (SED) averaged over a structural volume having size R0 and surrounding the crack initiation point. In the present contribution, the multiaxial fatigue behaviour of circumferentially notched specimens made of titanium grade 5 alloy, Ti-6Al-4V, has been analysed. Pure bending, pure torsion and in-phase as well as out-of-phase combined bending-torsion fatigue tests have been carried out on notched specimens characterized by two different root radii, namely 0.1 and 4 mm. Fatigue crack initiation and subsequent propagation have been monitored by adopting the direct current potential drop (DCPD) technique. In principle, crack initiation life has been defined when the initiated fatigue crack fractures the structural volume, which corresponds to a given potential drop increase calibrated by means of electrical finite element (FE) analyses. The structural volume size R0 has been determined by fatigue testing plain and sharp V-notched specimens under pure axial or pure torsion loadings. Finally, the averaged SED approach has been adopted to correlate the experimental fatigue results expressed in terms of crack initiation life, in order to reduce the effect of extrinsic mechanisms.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleNotched Ti-6Al-4V titanium bars under multiaxial fatigue: Synthesis of crack initiation life based on the averaged strain energy densitynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber509-533nb_NO
dc.source.volume96nb_NO
dc.source.journalTheoretical and applied fracture mechanics (Print)nb_NO
dc.identifier.doi10.1016/j.tafmec.2018.06.010
dc.identifier.cristin1630023
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 30.6.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,92,0
cristin.unitnameInstitutt for maskinteknikk og produksjon
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextpreprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal