Vis enkel innførsel

dc.contributor.authorNodargi, Nicola
dc.contributor.authorKiendl, Josef
dc.contributor.authorBisegna, Paolo
dc.contributor.authorCaselli, Federica
dc.contributor.authorDe Lorenzis, Laura
dc.date.accessioned2019-02-25T11:41:32Z
dc.date.available2019-02-25T11:41:32Z
dc.date.created2018-04-24T17:47:33Z
dc.date.issued2018
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering. 2018, 338 392-411.nb_NO
dc.identifier.issn0045-7825
dc.identifier.urihttp://hdl.handle.net/11250/2587222
dc.description.abstractAn isogeometric analysis formulation for simulating red blood cell (RBC) electro-deformationis presented. Electrically-induced cell deformation experiments are receiving increasing attention as an attractive strategy for single-cell mechanical phenotyping. As the RBC structure consists in a very thin biological membrane enclosing a nearly-incompressible fluid, (i) a surface shell kinematic model and (ii) the imposition of the shell enclosed-volume conservation constraint are proposed within the isogeometric analysis framework. With regard to the electro-deformation, an accurate evaluation of the electric-field induced forces is achieved by the Maxwell stress tensor approach. A staggered fixed-point iteration scheme is then proposed for performing the electro-mechanical coupling, in order to use reliable mechanical and electrical problem solvers sequentially. Supported by the comparison with experimental results and reference solutions, numerical simulations concerning the large deformation of a RBC by optical tweezers and an in silico electro-deformation experiment prove the accuracy and the effectiveness of the proposed formulation.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAn isogeometric analysis formulation for red blood cell electro-deformation modelingnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber392-411nb_NO
dc.source.volume338nb_NO
dc.source.journalComputer Methods in Applied Mechanics and Engineeringnb_NO
dc.identifier.doi10.1016/j.cma.2018.04.038
dc.identifier.cristin1581372
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 2.5.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal