Vis enkel innførsel

dc.contributor.advisorOwren, Brynjulfnb_NO
dc.contributor.authorDahlby, Morten Liennb_NO
dc.date.accessioned2014-12-19T13:58:32Z
dc.date.available2014-12-19T13:58:32Z
dc.date.created2010-09-13nb_NO
dc.date.issued2007nb_NO
dc.identifier351333nb_NO
dc.identifierntnudaim:3434nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/258702
dc.description.abstractWe give an short introduction to the Camassa-Holm equation and its travelling wave solutions. Many well-known equations in mathematical physics describe geodesic flows on appropriate Lie groups. The choice of group and metric defines the Euler equation. We show that by choosing the group of diffeomorphisms on the circle and the Sobolev H^1-metric one gets the Camassa-Holm equation. The equation is shown to have a bi-Hamiltonian structure, and thus infinitely many conserved quantities. We introduce a new class of methods that can be applied to the Euler equation. We solve the Camassa-Holm equation by freezing some of the coefficients in the Euler equation and applying a Lie group integrator. In some situations the method is found to outperform existing schemes. The available numerical methods is reviewed and modified. We compare long term structure preservation for both smooth and non-smooth initial conditions for each method. Of special interest is the ability to handle wave collisions.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for matematiske fagnb_NO
dc.subjectntnudaimno_NO
dc.subjectSIF3 fysikk og matematikkno_NO
dc.subjectIndustriell matematikkno_NO
dc.titleGeometric integration of nonlinear wave equationsnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber56nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for matematiske fagnb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel