Vis enkel innførsel

dc.contributor.authorNiu, Juntian
dc.contributor.authorLiland, Shirley Elisabeth
dc.contributor.authorYang, Jia
dc.contributor.authorRout, Kumar Ranjan
dc.contributor.authorRan, Jingyu
dc.contributor.authorChen, De
dc.date.accessioned2019-02-19T14:45:57Z
dc.date.available2019-02-19T14:45:57Z
dc.date.created2018-10-10T14:06:38Z
dc.date.issued2018
dc.identifier.citationChemical Engineering Journal. 2018, 1-12.nb_NO
dc.identifier.issn1385-8947
dc.identifier.urihttp://hdl.handle.net/11250/2586358
dc.description.abstractHere we provide new mechanistic and kinetic insights into the functions of oxides on Ni catalysts in methane dry reforming combining kinetic studies with density functional theory (DFT) calculations. Hydrotalcite derived Ni catalysts with a small amount of oxide additive (CeO2, ZrO2, ZnO) as promoters are synthesized and characterized by different techniques, X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 physisorption, H2 chemisorption, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis combined with mass spectrometry (TGA-MS). Regarding H2/CO ratio, the CeO2-Ni shows the highest the values along all the temperatures. Moreover, the CeO2-Ni catalyst has the best stability among the four catalysts, while ZnO-Ni experiences the most severe deactivation. Kinetic studies in terms of reaction orders and activation energies are performed and compared to the DFT investigations, to assess the functions of oxide promoters. The CeO2-Ni catalyst shows the lowest apparent activation energy for CO2 activation, and it is also found that forward turnover rate is independent of CO2 partial pressure for all the samples. In DFT calculations, CO2 is more favorable to be activated on the support and the TOF obtained from G plot is in perfect agreement with our experiment value. In addition, it is also found that basicity of oxide additives and electronegativity of metal element can be well correlated to the activation of CO2 and catalyst’s deactivation. In general, both the increased basicity of oxide and the decreased electronegativity of metal element help to promote the CO2 activation and enhance the catalyst’s stability. We propose that the CeO2-Ni catalyst has best performance for CO2 activation, thus leading to a higher surface oxygen concentration to oxidize the carbon on the catalysts, which prolongs the catalyst’s life.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleEffect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methanenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber1-12nb_NO
dc.source.journalChemical Engineering Journalnb_NO
dc.identifier.doi10.1016/j.cej.2018.08.149
dc.identifier.cristin1619371
dc.description.localcode© 2018 This is the authors’ accepted and refereed manuscript to the article. Locked until 23.08.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal