Vis enkel innførsel

dc.contributor.authorViespoli, Luigi Mario
dc.contributor.authorMutignani, Francesco
dc.contributor.authorgulyas, gabor
dc.contributor.authorremes, heikki
dc.contributor.authorBerto, Filippo
dc.date.accessioned2019-02-18T15:41:33Z
dc.date.available2019-02-18T15:41:33Z
dc.date.created2018-08-13T13:12:14Z
dc.date.issued2018
dc.identifier.citationMATEC Web of Conferences. 2018, .nb_NO
dc.identifier.issn2261-236X
dc.identifier.urihttp://hdl.handle.net/11250/2586067
dc.description.abstractPerforming the fatigue assessment of a welded joint using the Notch Stress Intensity Factors [1] presents two major challenges. The first is the necessity of a precise reconstruction of the stress field around the notch tip, thus needing an extremely refined discretization with an evident computational cost. The other, is that the dimensions of the N-SIFs and so their critical values, vary accordingly to the William’s solution [2] depending on the notch-opening angle. Consequence of this is that the mechanical properties necessary for the assessment vary as a function of the geometry treated. The research to overcome this issue has led to the use of the local Strain Energy Density [3]. The power of this parameter, used as a tool to perform fatigue assessment, consists of having a very low mesh refinement sensitivity [4], being the energy computed directly from nodal displacements and stiffness matrix [5], and having constant dimensions, so constant critical value for a given class of materials. In this paper, the local energetic method is applied to the analysis of the results of a series of tests performed on cruciform load carrying and non-load carrying specimens realized by S235 JRG2 structural steel plates. If load carrying, the fillet welded joints are made of S355 J2+N structural steel. The fatigue testing has been performed in atmosphere at room temperature in as welded condition both with and without the corrosion protective zinc layer. Particularly, the interest is focused on the influence of the zinc layer of the fatigue properties of the joint and on the capability of the local energetic approach, confronted with the classic nominal stress approach, to accurately predict the fatigue failure. To conclude, the investigation of the tests executed reveals no significant difference in the fatigue life for the coated samples, compared with the uncoated specimens and the predictions according to the IIW recommendations [6].nb_NO
dc.language.isoengnb_NO
dc.publisherEDP Sciencesnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleLocal strain energy based fatigue assessment of cruciform welded joints: experimental data analysis and influence of hot-dip galvanizationnb_NO
dc.title.alternativeLocal strain energy based fatigue assessment of cruciform welded joints: experimental data analysis and influence of hot-dip galvanizationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber8nb_NO
dc.source.volume188nb_NO
dc.source.journalMATEC Web of Conferencesnb_NO
dc.identifier.doi10.1051/matecconf/201818802013
dc.identifier.cristin1601518
dc.description.localcode© The Authors, published by EDP Sciences, 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.nb_NO
cristin.unitcode194,64,92,0
cristin.unitnameInstitutt for maskinteknikk og produksjon
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal