Vis enkel innførsel

dc.contributor.authorAursand, Eskil
dc.date.accessioned2019-02-14T12:29:13Z
dc.date.available2019-02-14T12:29:13Z
dc.date.created2018-05-29T15:55:43Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Multiphase Flow. 2018, 106 243-253.nb_NO
dc.identifier.issn0301-9322
dc.identifier.urihttp://hdl.handle.net/11250/2585460
dc.description.abstractUnderstanding the dynamics of film boiling is crucial for predicting its heat transfer properties. Besides the complete breakdown of film boiling (Leidenfrost point), the most prominent transition is the change from a steady state to an unstable and oscillating vapor film. Here we consider the stability of saturated planar non-horizontal film boiling, with particular attention given to its dependence on inclination angle. Based on the lubrication approximation and a quasi-equilibrium evaporation model, we derive a model for transient film boiling dynamics. We investigate the stability of its steady-state solution by locally applying potential flow linear stability analysis. We show how the behavior will be an inclination dependent mixture of Kelvin–Helmholtz and Rayleigh–Taylor type instabilities, and a relatively simple stability criterion is derived. We also show how the transient lubrication model is incapable of predicting the former kind of instability. The model’s ability to predict the inclination dependence of stability limits is tested against an experimental data set from the literature, and we see that the model displays reasonable accuracy considering its lack of free empirical parameters.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleInclination dependence of planar film boiling stabilitynb_NO
dc.title.alternativeInclination dependence of planar film boiling stabilitynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber243-253nb_NO
dc.source.volume106nb_NO
dc.source.journalInternational Journal of Multiphase Flownb_NO
dc.identifier.doi10.1016/j.ijmultiphaseflow.2018.05.010
dc.identifier.cristin1587506
dc.relation.projectNorges forskningsråd: 244076nb_NO
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 11.5.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal