Vis enkel innførsel

dc.contributor.authorWu, Jianyang
dc.contributor.authorCao, Pinqiang
dc.contributor.authorZhang, Zhisen
dc.contributor.authorNing, Fulong
dc.contributor.authorZheng, Songsheng
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2019-01-16T07:14:29Z
dc.date.available2019-01-16T07:14:29Z
dc.date.created2018-02-05T12:30:17Z
dc.date.issued2018
dc.identifier.citationNano letters (Print). 2018, 18 1543-1552.nb_NO
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/11250/2580771
dc.description.abstractPristine monocrystalline molybdenum disulphide (MoS2) possesses high mechanical strength comparable to that of stainless steel. Large-area chemical-vapor-deposited monolayer MoS2 tends to be polycrystalline with intrinsic grain boundaries (GBs). Topological defects and grain size skillfully alter its physical properties in a variety of materials; however, the polycrystallinity and its role played in the mechanical performance of the emerging single-layer MoS2 remain largely unknown. Here, using large-scale atomistic simulations, GB structures and mechanical characteristics of realistic single-layered polycrystalline MoS2 of varying grain size prepared by confinement-quenched method are investigated. Depending on misorientation angle, structural energetics of polar-GBs in polycrystals favor diverse dislocation cores, consistent with experimental observations. Polycrystals exhibit grain size dependent thermally-induced global out-of-plane deformation, although defective GBs in MoS2 show planar structures that are in contrast to the graphene. Tensile tests show that presence of cohesive GBs pronouncedly deteriorates the in-plane mechanical properties of MoS2. Both stiffness and strength follow an inverse pseudo Hall-Petch relation to grain size, which is shown to be governed by the weakest link mechanism. Under uniaxial tension, transgranular crack propagates with small deflection, whereas upon biaxial stretching the crack kinkily grows with large deflection. These findings shed new light in GB-based engineering and control of mechanical properties of MoS2 crystals towards real-world applications in flexible electronics and nanoelectromechanical systems.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Chemical Societynb_NO
dc.titleGrain-size Controlled Mechanical Properties of Polycrystalline Monolayer MoS2nb_NO
dc.typeJournal articlenb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber1543-1552nb_NO
dc.source.volume18nb_NO
dc.source.journalNano letters (Print)nb_NO
dc.identifier.doi10.1021/acs.nanolett.7b05433
dc.identifier.cristin1561876
dc.relation.projectNotur/NorStore: NN9391Knb_NO
dc.relation.projectNotur/NorStore: NN9110Knb_NO
dc.description.localcodeThis article will not be available due to copyright restrictions (c) 2018 by American Chemical Societynb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel