Vis enkel innførsel

dc.contributor.authorMentzoni, Fredrik
dc.contributor.authorKristiansen, Trygve
dc.date.accessioned2019-01-05T12:55:04Z
dc.date.available2019-01-05T12:55:04Z
dc.date.created2019-01-04T08:58:02Z
dc.date.issued2019
dc.identifier.citationApplied Ocean Research. 2019, 84 1-11.nb_NO
dc.identifier.issn0141-1187
dc.identifier.urihttp://hdl.handle.net/11250/2579327
dc.description.abstractPerforated plates, relevant for several marine applications, are experimentally and numerically investigated. The numerical investigations are performed using a presently developed Navier–Stokes solver. Several comparison and sensitivity studies are presented, in order to validate and verify the solver. Forced heave experiments are performed on two perforated plates with perforation ratios 19% and 28%. Amplitude-dependent added mass and damping coefficients are presented. Good agreement is obtained between the solver and the present experiments. Consistent with existing data, the results show that the hydrodynamic coefficients of perforated plates are highly amplitude dependent. The damping force is found to dominate over added mass force. The damping force dominance increases with increasing perforation ratio. It is highlighted that plate-end flow separation has an important effect on the damping coefficient. The developed numerical solver is two-dimensional, but is found to yield reasonable estimates of hydrodynamic force coefficients when compared with a previous three-dimensional experimental investigation. This could indicate that three-dimensional effects are not dominant for the hydrodynamic forces of perforated plates, and that a two-dimensional viscous flow solver could have relevance as a tool for estimating hydrodynamic forces on three-dimensional perforated structures.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleNumerical modeling of perforated plates in oscillating flownb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber1-11nb_NO
dc.source.volume84nb_NO
dc.source.journalApplied Ocean Researchnb_NO
dc.identifier.doihttps://doi.org/10.1016/j.apor.2018.12.016
dc.identifier.cristin1650077
dc.description.localcode© 2019. This is the authors’ accepted and refereed manuscript to the article. Locked until 4.4.2021 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal