Vis enkel innførsel

dc.contributor.authorGöing, Jan
dc.contributor.authorBartl, Jan Michael Simon
dc.contributor.authorMühle, Franz Volker
dc.contributor.authorSætran, Lars Roar
dc.contributor.authorThamsen, Paul Uwe
dc.date.accessioned2018-12-11T09:07:51Z
dc.date.available2018-12-11T09:07:51Z
dc.date.created2018-11-06T19:46:21Z
dc.date.issued2018
dc.identifier.citationJournal of Physics, Conference Series. 2018, 1104 .nb_NO
dc.identifier.issn1742-6588
dc.identifier.urihttp://hdl.handle.net/11250/2577049
dc.description.abstractIn times of intense renewable energy development, the planning of wind farms and the improvement of their total efficiency has become a major field of research. A precise analysis of the velocity deficit, fluctuation load and the wake properties behind a turbine is essential to identify the optimal positioning and control of a wind farm cluster. Due to the increasing computer performance, numerical models have become an important tool for the precise analysis of the turbulent wake flow and for the optimization of the positioning of the turbine in a wind farm. In this study the wake characteristics are calculated with a Delayed-Detached-Eddy-Simulation (DDES) using a sliding mesh technique. The simulation is based on a 3D model wind turbine with a diameter of 0.89 m and a test area which corresponds to the wind tunnel geometry at the Department of Energy and Process Engineering at NTNU. A validation of DDES with an experimental Laser-Doppler-Anemometry (LDA) matches well with the results of the simulation. Furthermore, the coherent motions of vortex shedding in the near wake are detected with the Proper-Orthogonal-Decomposition (POD) technique while the significant frequencies are detected with a Power-Spectral-Density (PSD). These quantities describe the transition from coherent to turbulent motions in the wake and explain the influence of the downstream flow in detail. The investigation shows that the DDES computations are able to accurately predict the mean and turbulent wake flow behind a model wind turbine.nb_NO
dc.language.isoengnb_NO
dc.publisherIOPnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA Detached-Eddy-Simulation study: Proper-Orthogonal-Decomposition of the wake flow behind a model wind turbinenb_NO
dc.title.alternativeA Detached-Eddy-Simulation study: Proper-Orthogonal-Decomposition of the wake flow behind a model wind turbinenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber10nb_NO
dc.source.volume1104nb_NO
dc.source.journalJournal of Physics, Conference Seriesnb_NO
dc.identifier.doi10.1088/1742-6596/1104/1/012005
dc.identifier.cristin1627724
dc.description.localcodeContent from this work may be used under the terms of theCreative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltdnb_NO
cristin.unitcode194,64,25,0
cristin.unitcode194,64,91,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.unitnameInstitutt for bygg- og miljøteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal