Vis enkel innførsel

dc.contributor.advisorNorum, Lars Einarnb_NO
dc.contributor.advisorIdsøe Næss, Bjarnenb_NO
dc.contributor.authorEinervoll, Torgernb_NO
dc.date.accessioned2014-12-19T13:51:27Z
dc.date.available2014-12-19T13:51:27Z
dc.date.created2010-09-04nb_NO
dc.date.issued2009nb_NO
dc.identifier348906nb_NO
dc.identifierntnudaim:4833nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/256654
dc.description.abstractGas turbines in offshore power systems contribute to about 23% of Norway’s total emissions of CO2. One method for reducing these emissions could be the addition of wind turbines to the offshore utility grids. Power from shore is another alternative, but has been proven costly due to long cables and expensive HVDC converter stations. In this thesis work, the behaviours of different wind turbine technologies during transient fluctuations in an offshore utility grid have been studied. For this purpose, a dynamic model for an offshore oil platform was developed. Models of squirrel cage and doubly fed induction generator based turbines were developed as well. None of the modelled generators experienced problems with the disturbances caused by the electromechanical transient fluctuations. Based on the behaviour of the DFIG’s grid side converter, it is believed that the result would be the same for a wind turbine with full frequency conversion. Variable speed wind turbines are expected to remain controllable throughout electromechanical transient fluctuations such as for the simulated case. However, the controllers, converters and equipment have to be designed while bearing these fluctuations in mind. The controllability of the variable speed wind turbines could be used to contribute to voltage control by production and consumption of reactive power. A controller scheme with the purpose of stabilising the voltage at the gas turbine generators’ terminal was developed, but had low impacts on the power system behaviour. A stator flux feed forward term for the speed controller was developed. The term stabilised the power output of the doubly fed induction generator. However, the impact on the power system’s frequency response was minimal, and there is probably no material value of such an addition to the control loop.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for elkraftteknikknb_NO
dc.subjectntnudaimno_NO
dc.subjectSIE5 energi og miljøno_NO
dc.subjectEnergibruk og energiplanleggingno_NO
dc.titleImpact on Wind Turbine Systems from Transient Fluctuations in Offshore Utility Gridsnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber114nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for elkraftteknikknb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel