Vis enkel innførsel

dc.contributor.authorZhao, Junhua
dc.contributor.authorNagao, Shijo
dc.contributor.authorOdegard, Gregory
dc.contributor.authorZhang, Zhiliang
dc.contributor.authorKristiansen, Helge
dc.contributor.authorHe, Jianying
dc.date.accessioned2018-09-28T08:16:10Z
dc.date.available2018-09-28T08:16:10Z
dc.date.created2014-01-09T18:25:11Z
dc.date.issued2013
dc.identifier.citationNanoscale Research Letters. 2013, 8 .nb_NO
dc.identifier.issn1931-7573
dc.identifier.urihttp://hdl.handle.net/11250/2565158
dc.description.abstractAnisotropic conductive adhesives (ACAs) are promising materials used for producing ultra-thin liquid-crystal displays. Because the mechanical response of polymer particles can have a significant impact in the performance of ACAs, understanding of this apparent size effect is of fundamental importance in the electronics industry. The objective of this research is to use a coarse-grained molecular dynamics model to verify and gain physical insight into the observed size dependence effect in polymer particles. In agreement with experimental studies, the results of this study clearly indicate that there is a strong size effect in spherical polymer particles with diameters approaching the nanometer length scale. The results of the simulations also clearly indicate that the source for the increases in modulus is the increase in relative surface energy for decreasing particle sizes. Finally, the actual contact conditions at the surface of the polymer nanoparticles are shown to be similar to those predicted using Hertz and perfectly plastic contact theory. As ACA thicknesses are reduced in response to reductions in polymer particle size, it is expected that the overall compressive stiffness of the ACA will increase, thus influencing the manufacturing process.nb_NO
dc.language.isoengnb_NO
dc.publisherSpringerOpennb_NO
dc.relation.urihttp://www.nanoscalereslett.com/content/8/1/541
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSize-dependent mechanical behavior of nanoscale polymer particles through coarse-grained molecular dynamics simulationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber10nb_NO
dc.source.volume8nb_NO
dc.source.journalNanoscale Research Lettersnb_NO
dc.identifier.doi10.1186/1556-276X-8-541
dc.identifier.cristin1086979
dc.relation.projectNotur/NorStore: NN9110Knb_NO
dc.description.localcode© 2013 Zhao et al.; licensee Springer. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citednb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal