Vis enkel innførsel

dc.contributor.authorFranzen, Christoph
dc.contributor.authorHibbins, Robert
dc.contributor.authorEspy, Patrick Joseph
dc.contributor.authorDjupvik, Anlaug Amanda
dc.date.accessioned2018-08-27T11:50:29Z
dc.date.available2018-08-27T11:50:29Z
dc.date.created2017-12-15T15:19:11Z
dc.date.issued2017
dc.identifier.citationAtmospheric Measurement Techniques. 2017, 10 (8), 3093-3101.nb_NO
dc.identifier.issn1867-8548
dc.identifier.urihttp://hdl.handle.net/11250/2559425
dc.description.abstractAstronomical spectroscopic observations from ground-based telescopes contain background emission lines from the terrestrial atmosphere's airglow. In the near infrared, this background is composed mainly of emission from Meinel bands of hydroxyl (OH), which is produced in highly excited vibrational states by reduction of ozone near 90 km. This emission contains a wealth of information on the chemical and dynamical state of the Earth's atmosphere. However, observation strategies and data reduction processes are usually optimized to minimize the influence of these features on the astronomical spectrum. Here we discuss a measurement technique to optimize the extraction of the OH airglow signal itself from routine J-, H-, and K-band long-slit astronomical spectroscopic observations. As an example, we use data recorded from a point-source observation by the Nordic Optical Telescope's intermediate-resolution spectrograph, which has a spatial resolution of approximately 100 m at the airglow layer. Emission spectra from the OH vibrational manifold from v′  =  9 down to v′  =  3, with signal-to-noise ratios up to 280, have been extracted from 10.8 s integrations. Rotational temperatures representative of the background atmospheric temperature near 90 km, the mesosphere and lower thermosphere region, can be fitted to the OH rotational lines with an accuracy of around 0.7 K. Using this measurement and analysis technique, we derive a rotational temperature distribution with v′ that agrees with atmospheric model conditions and the preponderance of previous work. We discuss the derived rotational temperatures from the different vibrational bands and highlight the potential for both the archived and future observations, which are at unprecedented spatial and temporal resolutions, to contribute toward the resolution of long-standing problems in atmospheric physics.nb_NO
dc.language.isoengnb_NO
dc.publisherEuropean Geosciences Union (EGU)nb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleOptimizing hydroxyl airglow retrievals from long-slit astronomical spectroscopic observationsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber3093-3101nb_NO
dc.source.volume10nb_NO
dc.source.journalAtmospheric Measurement Techniquesnb_NO
dc.source.issue8nb_NO
dc.identifier.doi10.5194/amt-10-3093-2017
dc.identifier.cristin1528187
dc.relation.projectNorges forskningsråd: 223252nb_NO
dc.description.localcode© Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal