Vis enkel innførsel

dc.contributor.authorMeyer, Hans Kristian Hygen
dc.contributor.authorMauseth, Frank
dc.contributor.authorPedersen, Per Atle
dc.contributor.authorEkeberg, Jonas
dc.date.accessioned2018-08-16T12:14:19Z
dc.date.available2018-08-16T12:14:19Z
dc.date.created2018-07-16T15:46:04Z
dc.date.issued2018
dc.identifier.citationIEEE transactions on dielectrics and electrical insulation. 2018, 25 (3), 1121-1127.nb_NO
dc.identifier.issn1070-9878
dc.identifier.urihttp://hdl.handle.net/11250/2558278
dc.description.abstractThe complexity of gas-insulated substations makes it difficult to predict withstand voltages. Modeling interaction between dielectric surfaces and electrical discharges is a key challenge. In this study, 60 mm rod-plane air gaps with a dielectric barrier 20 mm below the rod are stressed with lightning impulses of both polarities. The discharge mechanisms are investigated with a high-speed camera, a photomultiplier tube and a current measurement system. The discharge development and current-velocity relationship is leader-like. With positive polarity applied, a leader propagates from the upper parts of the rod to ground. Negative impulses are characterized by positive leader development from the ground plane to the rod. For both polarities, the discharge starts with streamers propagating from the rod to the barrier. Positive streamers typically reach the opposite electrode without causing breakdown directly. The findings imply that empirical breakdown prediction models for short air gaps should involve conditions for positive leader initiation and development. The results also show that dielectric barriers increase the breakdown voltage by impeding leader development. The barriers increase the shortest discharge path and shift the point of leader inception further up on the rod.nb_NO
dc.language.isoengnb_NO
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)nb_NO
dc.titleBreakdown Mechanisms of Rod-Plane Air Gaps with a Dielectric Barrier Subject to Lightning Impulse Stressnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber1121-1127nb_NO
dc.source.volume25nb_NO
dc.source.journalIEEE transactions on dielectrics and electrical insulationnb_NO
dc.source.issue3nb_NO
dc.identifier.doi10.1109/TDEI.2018.007023
dc.identifier.cristin1597524
dc.relation.projectNorges forskningsråd: 245422nb_NO
dc.description.localcode© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.nb_NO
cristin.unitcode194,63,20,0
cristin.unitnameInstitutt for elkraftteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel