• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Event Detection and Stock Prediction: A Knowledge-intensive Approach

Navjord, Terje Hamsund
Master thesis
View/Open
756648_FULLTEXT01.pdf (Locked)
756648_COVER01.pdf (Locked)
URI
http://hdl.handle.net/11250/253905
Date
2014
Metadata
Show full item record
Collections
  • Institutt for datateknologi og informatikk [4881]
Abstract
This thesis explores knowledge-intensive event detection using articles from Dagens Næringsliv for the purpose of predicting stocks. The event detection task is solved by using LogicLDA to detect events from segments of the articles. Events and sentiment from articles and technical and fundamental analysis relating to the ten largest companies of the Oslo Stock Exchange energy sector are used as input for various machine-learning algorithms to predict stock prices. Event detection, stock prediction and a trading simulation all achieve encouraging results.
Publisher
Institutt for datateknikk og informasjonsvitenskap

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit