Vis enkel innførsel

dc.contributor.advisorHartmann, Mortennb_NO
dc.contributor.advisorGrannæs, Mariusnb_NO
dc.contributor.authorØstby, Kennethnb_NO
dc.date.accessioned2014-12-19T13:31:51Z
dc.date.available2014-12-19T13:31:51Z
dc.date.created2010-09-03nb_NO
dc.date.issued2007nb_NO
dc.identifier347519nb_NO
dc.identifierntnudaim:3420nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/250516
dc.description.abstractThe single core processor stagnated due to four major factors. (1) The lack of instruction level parallelism to exploit, (2) increased power consumption, (3) complexity involved in designing a modern processor, and (4) the gap in performance between memory and the processor. As the gate size has decreased, a natural solution has been to introduce several cores on the same die, creating a chip multicore processor. However, the introduction of chip multicore processors has brought a new set of new challenges such as power consumptions and cache strategies. Although throughly researched in context of super computers, the chip multiprocessor has decreased in physical size, and thus some of the old paradigms should be reevaluated, and new ones found. To be able to research, simulate and experiment on new multicore architectures, simulators and methods of prototyping are needed by the community, and has traditionally been done by software simulators. To help decrease the time between results, and increase the productivity a hardware based method of prototyping is needed. This thesis contributes by presenting a novel multicore architecture with interchangeable and easily customizable units allowing the developers to extend the architecture, rewriting only the subsystem in question. The architecture is implemented in VHDL and has been tested on a Virtex FPGA, utilizing the MicroBlaze microcontroller. Based upon FPGA technologies, the platform has a more accurate nature than a software based simulator. The thesis also shows that a hardware based environment will significantly decrease the time to results.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for datateknikk og informasjonsvitenskapnb_NO
dc.subjectntnudaimno_NO
dc.subjectSIF2 datateknikkno_NO
dc.subjectKomplekse datasystemerno_NO
dc.titleFPGA Framework for CMPnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber140nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for datateknikk og informasjonsvitenskapnb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel