Show simple item record

dc.contributor.advisorHokland, Jørnnb_NO
dc.contributor.advisorYildirim, Sulenb_NO
dc.contributor.advisorCriswell, Andrewnb_NO
dc.contributor.authorKarlsen, Ero Stignb_NO
dc.date.accessioned2014-12-19T13:31:38Z
dc.date.available2014-12-19T13:31:38Z
dc.date.created2010-09-03nb_NO
dc.date.issued2007nb_NO
dc.identifier347445nb_NO
dc.identifierntnudaim:1267nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/250424
dc.description.abstractThe Baldwin effect is the notion that life time adaptation can speed up evolution by 1) identifying good traits and 2) by genetic assimilation inscribing the traits in the population genetically. This thesis investigates the Baldwin effect by giving an introduction to its history, its current status in evolutionary biology and by reviewing some important experiments on the Baldwin effect in artificial life. It is shown that the Baldwin effect is perceived differently in the two fields; in evolutionary biology the phenomenon is surrounded by controversy, while the approach in artificial life seems to be more straight forward. Numerous computer simulations of the Baldwin effect have been conducted, and most report positive findings. I argue that the Baldwin effect has been interpreted differently in the literature, and that a more well-defined approach is needed. An experiment is performed where the effect of learning on evolution is observed in fitness landscapes of different complexity and with different learning costs. It is shown that the choice of operators and parameter settings are important when assessing the Baldwin effect in computer simulations. In particular I find that mutation has an important impact on the Baldwin effect. I argue that today's computer simulations are too abstract to serve as empirical evidence for the Baldwin effect, but that they nevertheless can be valuable indications of the phenomenon in nature. To assure the soundness of experiments on the Baldwin effect, the assumptions and choices made in the implementations need to be clarified and critically discussed. One important aspect is to compare the different experiments and their interpretations in an attempt to assess the coherence between the different simulations.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for datateknikk og informasjonsvitenskapnb_NO
dc.subjectntnudaimno_NO
dc.subjectMIT informatikkno_NO
dc.subjectKunstig intelligens og læringno_NO
dc.titleLearning and Evolution in Complex Fitness Landscapesnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber84nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Institutt for datateknikk og informasjonsvitenskapnb_NO


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record