Vis enkel innførsel

dc.contributor.authorKartveit, Kyrre Heldal
dc.contributor.authorOmosanya, Kamaldeen Olakunle
dc.contributor.authorJohansen, Ståle Emil
dc.contributor.authorEruteya, Ovie
dc.contributor.authorReshef, Moshe
dc.contributor.authorWaldmann, Nicolas D.
dc.date.accessioned2018-05-25T09:26:28Z
dc.date.available2018-05-25T09:26:28Z
dc.date.created2018-01-29T13:26:23Z
dc.date.issued2018
dc.identifier.issn0278-7407
dc.identifier.urihttp://hdl.handle.net/11250/2499235
dc.description.abstractSpeculations surround salt deformation in the Mediterranean Basins, both related to the deformation history and the triggers for halokinesis since the onset of the Messinian Salinity Crisis (MSC). This work presents a detailed description of the mechanisms driving internal and external deformation of a salt giant from the Levant Basin, offshore Israel. The intrasalt siliciclastic layers generate good internal reflectivity within the Messinian evaporites, allowing a thorough elucidation of the complex evolution and nature of syn- and post-Messinian structures. We have identified three distinct phases of deformation in the deep basin, based on the orientation, timing and geometry of their related structures: The first phase is characterized by small-scaled, gravity-driven, contractional faults and folds oriented N-S that have been overprinted by a second syn-Messinian, NW-SE trending, deformation phase affecting the clastic bundles. This latter deformation phase is the cause of truncation of the intrasalt stringers on the intra-Messinian erosional surface (IMTS). The third deformation phase occurred in the Pleistocene and affected all strata from the Messinian salt to the seabed. This deformational phase produced thrust, strike-slip- and normal faults, but the dominant orientation of the thrust faults and folds is NNW-SSE. Our study demonstrates that the first deformation phase was caused by regional uplift along the Levant margin during the Messinian, the second is a response to basin subsidence toward the Cyprus Arc, also syn-Messinian, and the third phase is likely related to the reorganization of the African-Eurasian plate boundary and activity along the Dead Sea Transform after the MSC.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Geophysical Union (AGU)nb_NO
dc.titleMultiphase structural evolution and geodynamic implications of Messinian salt-related structures, Levant Basin, offshore Israelnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.journalTectonicsnb_NO
dc.identifier.doi10.1029/2017TC004794
dc.identifier.cristin1554675
dc.description.localcodePublished by: American Geophysical Union (AGU). Locked until 19.10.2018 due to copyright restrictions.nb_NO
cristin.unitcode194,64,90,0
cristin.unitnameInstitutt for geovitenskap og petroleum
cristin.ispublishedfalse
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel