• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Load Balancing of Pseudo-random Workloads on Heterogeneous Systems

Wenhaug, Anders
Master thesis
Thumbnail
Åpne
16416_FULLTEXT.pdf (5.213Mb)
16416_ATTACHMENT.zip (1.449Mb)
16416_COVER.pdf (1.613Mb)
Permanent lenke
http://hdl.handle.net/11250/2498757
Utgivelsesdato
2017
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [3771]
Sammendrag
Heterogeneous computing systems using one or more graphics processing units (GPUs) as accelerators present unique load balancing challenges due to the architecture of the GPUs. Assigning a part of the workload proportional to the throughput of the GPU is unlikely to achieve the peak theoretical performance of the GPU, partly because of branch divergence. Additionally, for workloads depending on pseudo-random numbers, the branch divergence may appear unpredictable, making it hard to work around.

In this thesis we present an approach for reorganizing pseudo-random workloads before execution on the GPU, with the goal of reducing the branch divergence. In our experiments, the method achieves a speedup in kernel execution time of up to 1.45 on a real application. We also show that the method may be faster even if the overhead of it is accounted for. Additionally, a method for estimating the resulting reduction in execution time is developed, which can be used for determining whether or not to apply the reorganization.

A graph based method for task balancing is also presented, which is able to select the optimal task sequence in over 96\% of the tested cases. This task graph doubles as a model for the throughput of the GPU, and the estimates are used by a load balancer to partition the workload between the central processing unit (CPU) and GPU.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit