Vis enkel innførsel

dc.contributor.authorZhang, Kainb_NO
dc.date.accessioned2014-12-19T13:28:14Z
dc.date.available2014-12-19T13:28:14Z
dc.date.created2014-07-10nb_NO
dc.date.issued2014nb_NO
dc.identifier734087nb_NO
dc.identifier.isbn978-82-326-0250-6 (printed ver.)nb_NO
dc.identifier.isbn978-82-326-0251-3 (electronic ver.)nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/249488
dc.description.abstractThe hood, doors and other panels of a car can be made by aluminium sheets, through complex forming operations. Design of forming processes requires trustable models and simulations. Forming properties are different in different directions. There are two principle ways to describe this plastic anisotropy of metals. The first one is the continuum theories for materials. The flow properties in various directions are described by the yield function. It is a parametric function calibrated by experimental tests. Unfortunately only a few mechanical tests can be directly used. The second approach takes into account that metals consist of many small crystals. The properties of each crystal are determined by crystal planes, but crystals are rotated in many directions. The crystal models either resolve all the details of thousands of crystals in a small volume element, requiring huge computer capacity, or simplified statistical models can be applied. In both cases the models are much more demanding than continuum models. In practice these models can be used to perform virtual experiments for calibration of continuum models. In his PhD work Kai Zhang (kai.zhang@ntnu.no) implemented and tested both type of models. More efficient numerical algorithms for computer simulations were developed and programmed for the detailed crystal plasticity approach. Three different cases were investigated experimentally. In one of the cases it was found that even for the detailed computer implementation the predictions could not replace experiments for design purposes. A combination of real and virtual experiments was recommended for calibration. For the other two cases the virtual experiments could be trusted. It was found that the best statistical models, that are more than thousand times faster, can replace detailed simulations of the crystal structure with high accuracy.nb_NO
dc.languageengnb_NO
dc.publisherNorges teknisk-naturvitenskapelige universitet, Fakultet for naturvitenskap og teknologi, Institutt for materialteknologinb_NO
dc.relation.ispartofseriesDoktoravhandlinger ved NTNU, 1503-8181; 2014:164nb_NO
dc.relation.haspartZhang, Kai; Holmedal, Bjørn; Hopperstad, Odd Sture; Dumoulin, Stephane; Gawad, Jerzy; Van Bael, Albert; Van Houtte, P. Multi-level Modelling of Mechanical Anisotropy of Commercial Pure Aluminium Plate. International journal of plasticity. (ISSN 0749-6419), 2014. <a href='http://dx.doi.org/10.1016/j.ijplas.2014.02.003'>10.1016/j.ijplas.2014.02.003</a>.nb_NO
dc.relation.haspartZhang, Kai; Holmedal, Bjørn; Hopperstad, Odd Sture; Dumoulin, Stephane. Use of plane-strain tension and shear tests to evaluate yield surfaces for AA1050 aluminium sheet. Materials Science Forum. (ISSN 0255-5476). 794-796: 596-601, 2014. <a href='http://dx.doi.org/10.4028/www.scientific.net/MSF.794-796.596'>10.4028/www.scientific.net/MSF.794-796.596</a>.nb_NO
dc.relation.haspartZhang, Kai; Holmedal, Bjørn; Hopperstad, Odd Sture; Dumoulin, Stephane. A robust and efficient substepping scheme for the explicit numerical integration of a rate-dependent crystal plasticity model. International Journal for Numerical Methods in Engineering. (ISSN 0029-5981). 99: 239-262, 2014. <a href='http://dx.doi.org/10.1002/nme.4671'>10.1002/nme.4671</a>.nb_NO
dc.relation.haspartZhang, Kai; Holmedal, B.; Hopperstad, O.S.; Dumoulin, S.. Modelling the Plastic Anisotropy of Aluminium Alloy 3103 Sheets by Polycrystal Plasticity Models. .nb_NO
dc.relation.haspartZhang, Kai; Holmedal, Bjørn; Dumoulin, Stephane; Hopperstad, Odd Sture. An explicit integration scheme for hypo-elastic viscoplastic crystal plasticity. The First Asian Conference on Aluminum Alloys, 2013.nb_NO
dc.relation.haspartZhang, Kai; Holmedal, Bjørn; Manik, Tomas. Crystal Plasticity Calculations of Mechanical Anisotropy of Aluminium Compared to Experiments and to Yield Criterion Fittings. ICAA13 - 13th International Conference on Aluminum Alloys: 915-920, 2012.nb_NO
dc.titleMulti-level Modelling of Plastic Anisotropy of Aluminium Alloys Using Crystal Plasticity Models and Advanced Yield Functionsnb_NO
dc.typeDoctoral thesisnb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for naturvitenskap og teknologi, Institutt for materialteknologinb_NO
dc.description.degreePhD i materialteknologinb_NO
dc.description.degreePhD in Materials Science and Engineeringen_GB


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel