Vis enkel innførsel

dc.contributor.authorRoussanaly, Simon
dc.contributor.authorAnantharaman, Rahul
dc.contributor.authorLindqvist, Karl Erik Artur
dc.contributor.authorHagen, Brede Andre Larsen
dc.date.accessioned2018-04-16T13:01:23Z
dc.date.available2018-04-16T13:01:23Z
dc.date.created2018-04-13T08:34:26Z
dc.date.issued2018
dc.identifier.issn2398-4902
dc.identifier.urihttp://hdl.handle.net/11250/2494298
dc.description.abstractDeveloping “good” membrane modules and materials is a key step towards reducing the cost of membrane-based CO2 capture. While this is traditionally being done through incremental development of existing and new materials, this paper presents a new approach to identify membrane materials with a disruptive potential to reduce the cost of CO2 capture for six potential industrial and power generation cases. For each case, this approach first identifies the membrane properties targets required to reach cost-competitiveness and several cost-reduction levels compared to MEA-based CO2 capture, through the evaluation of a wide range of possible membrane properties. These properties targets are then compared to membrane module properties which can be theoretically achieved using 401 polymeric membrane materials, in order to highlight 73 high-potential materials which could be used by membrane development experts to select materials worth pushing towards further development once practical considerations have been taken into account. Beyond the identification of individual materials, the ranges of membrane properties targets also show the strong potential of membrane-based capture for industrial cases in which the CO2 content in the flue gas is greater than 11%, and that considering CO2 capture ratios lower than 90% would significantly improve the competitiveness of membrane-based capture and lead to potentially significant cost reduction. Finally, it is important to note that the approach discussed here is applicable to other separation technologies and applications beyond CO2 capture, and could help reduce both the cost and time required to develop cost-effective technologies.nb_NO
dc.language.isoengnb_NO
dc.publisherRoyal Society of Chemistrynb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capturenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.journalSustainable Energy & Fuelsnb_NO
dc.identifier.doi10.1039/C8SE00039E
dc.identifier.cristin1579096
dc.relation.projectNorges forskningsråd: 193816nb_NO
dc.relation.projectNorges forskningsråd: 257529nb_NO
dc.description.localcodeOpen Access Article. Published on 11 April 2018. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal