Vis enkel innførsel

dc.contributor.authorMocholí Montañés, Rubén
dc.contributor.authorFlø, Nina Enaasen
dc.contributor.authorNord, Lars O.
dc.date.accessioned2018-04-11T08:47:49Z
dc.date.available2018-04-11T08:47:49Z
dc.date.created2018-04-10T12:09:38Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Greenhouse Gas Control. 2018, 73 42-59.nb_NO
dc.identifier.issn1750-5836
dc.identifier.urihttp://hdl.handle.net/11250/2493574
dc.description.abstractFlexible operation of combined cycle thermal power plants with chemical absorption post combustion CO2 capture is a key aspect for the development of the technology. Several studies have assessed the performance of decentralized control structures applied to the post combustion CO2 capture process via dynamic process simulation, however there is a lack of published data from demonstration or pilot plants. In this work, experiments on transient testing were conducted at the amine plant at Technology Centre Mongstad, for flue gas from a combined cycle combined heat and power plant (3.7–4.1 CO2 vol%). The experiments include six tests on open-loop responses and eight tests on transient performance of decentralized control structures for fast power plant load change scenarios. The transient response of key process variables to changes in flue gas volumetric flow rate, solvent flow rate and reboiler duty were analyzed. In general the process stabilizes within 1 h for 20% step changes in process inputs, being the absorber column absorption rates the slowest process variable to stabilize to changes in reboiler duty and solvent flow rate. Tests on fast load changes (10%/min) in flue gas flow rate representing realistic load changes in an upstream power plant showed that decentralized control structures could be employed in order to bring the process to desired off-design steady-state operating conditions within (<60 min). However, oscillations and instabilities in absorption and desorption rates driven by interactions of the capture rate and stripper temperature feedback control loops can occur when the rich solvent flow rate is changed significantly and fast as a control action to reject the flue gas volumetric flow rate disturbance and keeping liquid to gas ratio or capture rate constant.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleExperimental results of transient testing at the amine plant at Technology Centre Mongstad: Open-loop responses and performance of decentralized control structures for load changesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber42-59nb_NO
dc.source.volume73nb_NO
dc.source.journalInternational Journal of Greenhouse Gas Controlnb_NO
dc.identifier.doihttps://doi.org/10.1016/j.ijggc.2018.04.001
dc.identifier.cristin1578560
dc.description.localcode© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 10.4.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal