Vis enkel innførsel

dc.contributor.authorPolkowski, Wojciech
dc.contributor.authorSobczak, Natalia
dc.contributor.authorNowak, Rafal
dc.contributor.authorKudyba, Artur
dc.contributor.authorBruzda, Grzegorz
dc.contributor.authorPolkowska, Adelajda
dc.contributor.authorHoma, Marta
dc.contributor.authorTuralska, Patrycja
dc.contributor.authorTangstad, Merete
dc.contributor.authorSafarian, Jafar
dc.contributor.authorMoosavi-Khoonsari, Elmira
dc.contributor.authorDatas, Alejandro
dc.date.accessioned2018-03-06T09:36:35Z
dc.date.available2018-03-06T09:36:35Z
dc.date.created2018-02-05T11:08:53Z
dc.date.issued2017
dc.identifier.citationJournal of materials engineering and performance. 2017.nb_NO
dc.identifier.issn1059-9495
dc.identifier.urihttp://hdl.handle.net/11250/2488816
dc.description.abstractFor a successful implementation of newly proposed silicon-based latent heat thermal energy storage systems, proper ceramic materials that could withstand a contact heating with molten silicon at temperatures much higher than its melting point need to be developed. In this regard, a non-wetting behavior and low reactivity are the main criteria determining the applicability of ceramic as a potential crucible material for long-term ultrahigh temperature contact with molten silicon. In this work, the wetting of hexagonal boron nitride (h-BN) by molten silicon was examined for the first time at temperatures up to 1750 °C. For this purpose, the sessile drop technique combined with contact heating procedure under static argon was used. The reactivity in Si/h-BN system under proposed conditions was evaluated by SEM/EDS examinations of the solidified couple. It was demonstrated that increase in temperature improves wetting, and consequently, non-wetting-to-wetting transition takes place at around 1650 °C. The contact angle of 90° ± 5° is maintained at temperatures up to 1750 °C. The results of structural characterization supported by a thermodynamic modeling indicate that the wetting behavior of the Si/h-BN couple during heating to and cooling from ultrahigh temperature of 1750 °C is mainly controlled by the substrate dissolution/reprecipitation mechanism.nb_NO
dc.language.isoengnb_NO
dc.publisherSpringernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleWetting Behavior and Reactivity of Molten Silicon with h-BN Substrate at Ultrahigh Temperatures up to 1750 °Cnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-14nb_NO
dc.source.volume27nb_NO
dc.source.journalJournal of materials engineering and performance (Print)nb_NO
dc.source.issue201nb_NO
dc.identifier.doi10.1007/s11665-017-3114-8
dc.identifier.cristin1561807
dc.description.localcode© The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.nb_NO
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal