Vis enkel innførsel

dc.contributor.advisorHillestad, Magnenb_NO
dc.contributor.advisorKlimantos, Parisnb_NO
dc.contributor.authorFoss, Martin Skjærvønb_NO
dc.date.accessioned2014-12-19T13:24:10Z
dc.date.available2014-12-19T13:24:10Z
dc.date.created2013-09-19nb_NO
dc.date.issued2013nb_NO
dc.identifier649774nb_NO
dc.identifierntnudaim:9562nb_NO
dc.identifier.urihttp://hdl.handle.net/11250/248508
dc.description.abstractToday, crude oil is the main resource for production of liquid fuels. As the demandincreases, utilization of alternative resources becomes more and more urgent. Thus,the development of new and continued research on established process technologies isimportant.The scope of this Master?s thesis has been the catalytic hydrogenation of CO for production of linear, long chained hydrocarbons, known as the Fischer-Tropsch process. The core of a chemical plant is the reactor, thus the ultimate goal is to design the optimal reactor path layout for the process, i.e. find number of reactor stages, cooling media temperature, heat transfer area density, molar feed ratio and the inclusion or omission of separation of products. A kinetic model presented by Todic et al. [1], implemented in MATLAB R2012b, has formed the basis for the calculations.The simulations confirmed that the performance increases as the degrees of freedomwas increased. The supply of additional H2, prior to the reactor stages, yielded a majorincrease in production of key component, C11+. The optimal design, disregarding anyeconomical aspects, was a three-stage design with a space time equal to 0.8m3s/kg,a molar feed ratio , xH2/xCO , equal to 1.5, and separation of water and products between the reactor stages. The design resulted in a production of the key component equal to 12.8wt% of the feed flow. The exclusion of the separation between the reactor stages yielded a decrease of 10.3% in the production.The utilized method of reactor staging yields an optimal reactor design. The real-lifefeasibility of the design is still unknown as no economical aspects have been taken intoconsideration.nb_NO
dc.languageengnb_NO
dc.publisherInstitutt for kjemisk prosessteknologinb_NO
dc.titleSystematic Staging in Chemical Reactor Design: Fischer-Tropschnb_NO
dc.typeMaster thesisnb_NO
dc.source.pagenumber130nb_NO
dc.contributor.departmentNorges teknisk-naturvitenskapelige universitet, Fakultet for naturvitenskap og teknologi, Institutt for kjemisk prosessteknologinb_NO


Tilhørende fil(er)

Thumbnail
Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel