Vis enkel innførsel

dc.contributor.authorKalvig, Ragnhild Birgitte Hidle
dc.contributor.authorAbrahamsen-Prsic, Mia
dc.contributor.authorPettersen, Bjørnar
dc.date.accessioned2018-02-13T12:14:50Z
dc.date.available2018-02-13T12:14:50Z
dc.date.created2017-02-17T10:04:47Z
dc.date.issued2016
dc.identifier.isbn978-1-880653-88-3
dc.identifier.urihttp://hdl.handle.net/11250/2484372
dc.description.abstractCircular cylinders in tandem arrangement are frequently encountered in marine applications, for example as dual pipelines and dual risers. Complex flows arise around tandem cylinders, inducing large fluctuating forces on them. In this study, 3D flow around two tandem circular cylinders is numerically simulated using Large Eddy Simulations (LES) with Smagorinsky subgrid scale model: through the open-source code OpenFOAM. The cylinders are immersed in an infinite fluid and a steady current at intermediate subcritical Reynolds number (Re = 1.31 x 104 ). The center-to-center spacing between the cylinders is 5 diameters (S/D=5). The results are presented through the vorticity distribution, the mean velocity distributions, the root-mean-square (RMS) pressure distribution and the time series of the drag- and the lift coefficients. Special attention is given to explaining the physics of the flow in the spacing region. Surface streamlines are used to visualize the flow separation on both cylinders and the impingement location on the downstream cylinder. This representation has, to the knowledge of these authors, not been published before. The results of the drag and lift coefficients and the RMS pressure coefficient are compared with the previously published experimental measurements and comparable numerical simulations. A good agreement with previous research is accomplished. The flow for the given spacing proved to be in the coshedding regime, where the vortices form and shed behind the upstream cylinder: and impinge the downstream cylinder. Synchronized with the impingement, the vortices are shed behind the downstream cylinder.nb_NO
dc.language.isoengnb_NO
dc.publisherInternational Society of Offshore and Polar Engineers (ISOPE)nb_NO
dc.relation.ispartofProceedings of the Twenty-sixth International Ocean and Polar Engineering Conference - ISOPE 2016
dc.relation.urihttps://www.onepetro.org/download/conference-paper/ISOPE-I-16-316?id=conference-paper%2FISOPE-I-16-316
dc.titleNumerical Investigation of 3D Flow around Two Tandem Cylindersnb_NO
dc.typeChapternb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber119-125nb_NO
dc.identifier.cristin1451520
dc.relation.projectNotur/NorStore: nn9191knb_NO
dc.description.localcodeThis chapter will not be available due to copyright restrictions (c) 2016 by International Society of Offshore and Polar Engineers (ISOPE)nb_NO
cristin.unitcode194,64,20,0
cristin.unitnameInstitutt for marin teknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel