Vis enkel innførsel

dc.contributor.authorvan Schaardenburgh, Michel
dc.contributor.authorWohlwend, Martin Rainer
dc.contributor.authorRognmo, Øivind
dc.contributor.authorMattsson, Erney
dc.date.accessioned2018-01-24T08:53:34Z
dc.date.available2018-01-24T08:53:34Z
dc.date.created2017-06-20T15:09:49Z
dc.date.issued2017
dc.identifier.citationJournal of Translational Medicine. 2017, 15 (130), .nb_NO
dc.identifier.issn1479-5876
dc.identifier.urihttp://hdl.handle.net/11250/2479254
dc.description.abstractBackground Exercise of patients with intermittent claudication improves walking performance. Exercise does not usually increase blood flow, but seems to increase muscle mitochondrial enzyme activities. Although exercise is beneficial in most patients, it might be harmful in some. The mitochondrial response to exercise might therefore differ between patients. Our hypothesis was that changes in walking performance relate to changes in mitochondrial function after 8 weeks of exercise. At a subgroup level, negative responders decrease and positive responders increase mitochondrial capacity. Methods Two types of exercise were studied, calf raising and walking (n = 28). We wanted to see whether there were negative and positive responders, independent of type of exercise. Measurements of walking performance, peripheral hemodynamics, mitochondrial respiration and content (citrate synthase activity) were obtained on each patient before and after the intervention period. Multiple linear regression was used to test whether changes in peak walking time relate to mitochondrial function. Subgroups of negative (n = 8) and positive responders (n = 8) were defined as those that either decreased or increased peak walking time following exercise. Paired t test and analysis of covariance was used to test changes within and between subgroups. Results Changes in peak walking time were related to changes in mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI)P (p = 0.004), complex I (CI + ETF)P (p = 0.003), complex I + complex II (CI + CII + ETF)P (p = 0.037) and OXPHOS coupling efficiency (p = 0.046) in the whole group. Negative responders had more advanced peripheral arterial disease. Mitochondrial respiration supported by electron transferring flavoprotein (ETF + CI)P (p = 0.0013), complex I (CI + ETF)P (p = 0.0005), complex I + complex II (CI + CII + ETF)P (p = 0.011) and electron transfer system capacity (CI + CII + ETF)E (p = 0.021) and OXPHOS coupling efficiency decreased in negative responders (p = 0.0007) after exercise. Positive responders increased citrate synthase activity (p = 0.010). Conclusions Changes in walking performance seem to relate to changes in mitochondrial function after exercise. Negative responders have more advanced peripheral arterial disease and decrease, while positive responders increase mitochondrial capacity.nb_NO
dc.language.isoengnb_NO
dc.publisherBioMed Centralnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExercise in claudicants increase or decrease walking ability and the response relates to mitochondrial functionnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber10nb_NO
dc.source.volume15nb_NO
dc.source.journalJournal of Translational Medicinenb_NO
dc.source.issue130nb_NO
dc.identifier.doi10.1186/s12967-017-1232-6
dc.identifier.cristin1477621
dc.description.localcode© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)nb_NO
cristin.unitcode194,65,25,0
cristin.unitnameInstitutt for sirkulasjon og bildediagnostikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal