Show simple item record

dc.contributor.authorSorger, Hanne
dc.contributor.authorHofstad, Erlend Fagertun
dc.contributor.authorAmundsen, Tore
dc.contributor.authorLangø, Thomas
dc.contributor.authorBakeng, Janne Beate Lervik
dc.contributor.authorLeira, Håkon Olav
dc.date.accessioned2018-01-12T08:19:59Z
dc.date.available2018-01-12T08:19:59Z
dc.date.created2017-05-31T13:07:18Z
dc.date.issued2017
dc.identifier.citationPLoS ONE. 2017, 12 (2), .nb_NO
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11250/2477114
dc.description.abstractBackground Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation.nb_NO
dc.language.isoengnb_NO
dc.publisherPublic Library of Sciencenb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility studynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber15nb_NO
dc.source.volume12nb_NO
dc.source.journalPLoS ONEnb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.1371/journal.pone.0171841
dc.identifier.cristin1473173
dc.description.localcode© 2017 Sorger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.nb_NO
cristin.unitcode194,65,25,0
cristin.unitnameInstitutt for sirkulasjon og bildediagnostikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal