Vis enkel innførsel

dc.contributor.authorSnipstad, Sofie
dc.contributor.authorBerg, Sigrid
dc.contributor.authorMørch, Ýrr Asbjørg
dc.contributor.authorBjørkøy, Astrid
dc.contributor.authorSulheim, Einar
dc.contributor.authorHansen, Rune
dc.contributor.authorGrimstad, Ingeborg
dc.contributor.authorvan Wamel, Annemieke
dc.contributor.authorMaaland, Astri Fjelde
dc.contributor.authorTorp, Sverre Helge
dc.contributor.authorDavies, Ruth Catharina de Lange
dc.date.accessioned2018-01-05T15:39:45Z
dc.date.available2018-01-05T15:39:45Z
dc.date.created2017-11-24T14:31:26Z
dc.date.issued2017
dc.identifier.citationUltrasound in Medicine and Biology. 2017, 43 (11), 2651-2669.nb_NO
dc.identifier.issn0301-5629
dc.identifier.urihttp://hdl.handle.net/11250/2476080
dc.description.abstractCompared with conventional chemotherapy, encapsulation of drugs in nanoparticles can improve efficacy and reduce toxicity. However, delivery of nanoparticles is often insufficient and heterogeneous because of various biological barriers and uneven tumor perfusion. We investigated a unique multifunctional drug delivery system consisting of microbubbles stabilized by polymeric nanoparticles (NPMBs), enabling ultrasound-mediated drug delivery. The aim was to examine mechanisms of ultrasound-mediated delivery and to determine if increased tumor uptake had a therapeutic benefit. Cellular uptake and toxicity, circulation and biodistribution were characterized. After intravenous injection of NPMBs into mice, tumors were treated with ultrasound of various pressures and pulse lengths, and distribution of nanoparticles was imaged on tumor sections. No effects of low pressures were observed, whereas complete bubble destruction at higher pressures improved tumor uptake 2.3 times, without tissue damage. An enhanced therapeutic effect was illustrated in a promising proof-of-concept study, in which all tumors exhibited regression into complete remission.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleUltrasound Improves the Delivery and Therapeutic Effect of Nanoparticle-Stabilized Microbubbles in Breast Cancer Xenograftsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber2651-2669nb_NO
dc.source.volume43nb_NO
dc.source.journalUltrasound in Medicine and Biologynb_NO
dc.source.issue11nb_NO
dc.identifier.doi10.1016/j.ultrasmedbio.2017.06.029
dc.identifier.cristin1518203
dc.description.localcode© 2017 The Authors. Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).nb_NO
cristin.unitcode194,66,20,0
cristin.unitcode194,65,25,0
cristin.unitcode194,65,15,0
cristin.unitnameInstitutt for fysikk
cristin.unitnameInstitutt for sirkulasjon og bildediagnostikk
cristin.unitnameInstitutt for klinisk og molekylær medisin
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal