Vis enkel innførsel

dc.contributor.authorFernandes, Vasco Rafael P
dc.contributor.authorVan der Bossche, Maxime
dc.contributor.authorKnudsen, Jan
dc.contributor.authorFarstad, Mari Helene
dc.contributor.authorGustafson, Johan
dc.contributor.authorVenvik, Hilde Johnsen
dc.contributor.authorGrönbeck, Henrik
dc.contributor.authorBorg, Anne
dc.date.accessioned2017-12-21T08:00:16Z
dc.date.available2017-12-21T08:00:16Z
dc.date.created2016-06-04T20:36:42Z
dc.date.issued2016
dc.identifier.citationACS Catalysis. 2016, 6 4154-4161.nb_NO
dc.identifier.issn2155-5435
dc.identifier.urihttp://hdl.handle.net/11250/2473375
dc.description.abstractCO oxidation over Pd(100) and Pd75Ag25(100) has been investigated by a combination of near-ambient-pressure X-ray photoelectron spectroscopy, quadrupole mass spectrometry, density functional theory calculations, and microkinetic modeling. For both surfaces, hysteresis is observed in the CO2 formation during the heating and cooling cycles. Whereas normal hysteresis with light-off temperature higher than extinction temperature is present for Pd(100), reversed hysteresis is observed for Pd75Ag25(100). The reversed hysteresis can be explained by dynamic changes in the surface composition. At the beginning of the heating ramp, the surface is rich in palladium, which gives a CO coverage that poisons the surface until the desorption rate becomes sufficiently high. The thermodynamic preference for an Ag-rich surface in the absence of adsorbates promotes diffusion of Ag from the bulk to the surface as CO desorbs. During the cooling ramp, an appreciable surface coverage is reached at temperatures too low for efficient diffusion of Ag back into the bulk. The high concentration of Ag in the surface leads to a high extinction temperature and, consequently, the reversed hysteresis.nb_NO
dc.language.isoengnb_NO
dc.publisherAmerican Chemical Societynb_NO
dc.subjectOverflatefysikknb_NO
dc.subjectSurface physicsnb_NO
dc.titleReversed Hysteresis during CO Oxidation over Pd75Ag25(100)nb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400nb_NO
dc.subject.nsiVDP::Mathematics and natural scienses: 400nb_NO
dc.source.pagenumber4154-4161nb_NO
dc.source.volume6nb_NO
dc.source.journalACS Catalysisnb_NO
dc.identifier.doi10.1021/acscatal.6b00658
dc.identifier.cristin1359628
dc.relation.projectNorges forskningsråd: 197709nb_NO
dc.relation.projectVetenskapsrådet: 2011-3532nb_NO
dc.relation.projectVetenskapsrådet: 621-2014-4708nb_NO
dc.relation.projectNorges forskningsråd: 138368nb_NO
dc.relation.projectNordforsk: 40521nb_NO
dc.description.localcodeCopyright © 2016 American Chemical Society. This is the authors' accepted and refereed manuscript to the article.nb_NO
cristin.unitcode194,66,20,0
cristin.unitcode194,66,30,0
cristin.unitnameInstitutt for fysikk
cristin.unitnameInstitutt for kjemisk prosessteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel