• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse model selection in the highly under-sampled regime

Bulso, Nicola; Marsili, Matteo; Roudi, Yasser
Journal article
Accepted version
Thumbnail
Åpne
Sparse+model+selection+in+the+highly+under-sampled+regime.pdf (9.820Mb)
Permanent lenke
http://hdl.handle.net/11250/2469927
Utgivelsesdato
2016
Metadata
Vis full innførsel
Samlinger
  • Kavliinstitutt for nevrovitenskap [177]
  • Publikasjoner fra CRIStin - NTNU [21889]
Originalversjon
Journal of Statistical Mechanics: Theory and Experiment. 2016, .   10.1088/1742-5468/2016/09/093404
Sammendrag
We propose a method for recovering the structure of a sparse undirected graphical model when very few samples are available. The method decides about the presence or absence of bonds between pairs of variable by considering one pair at a time and using a closed form formula, analytically derived by calculating the posterior probability for every possible model explaining a two body system using Jeffreys prior. The approach does not rely on the optimisation of any cost functions and consequently is much faster than existing algorithms. Despite this time and computational advantage, numerical results show that for several sparse topologies the algorithm is comparable to the best existing algorithms, and is more accurate in the presence of hidden variables. We apply this approach to the analysis of US stock market data and to neural data, in order to show its efficiency in recovering robust statistical dependencies in real data with non stationary correlations in time and space.
Utgiver
IOP Publishing
Tidsskrift
Journal of Statistical Mechanics: Theory and Experiment

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit