Vis enkel innførsel

dc.contributor.authorCloete, Schalk
dc.contributor.authorZaabout, Abdelghafour
dc.contributor.authorJohansen, Stein Tore
dc.contributor.authorAmini, Shahriar
dc.date.accessioned2017-12-04T10:08:16Z
dc.date.available2017-12-04T10:08:16Z
dc.date.created2012-10-02T13:16:31Z
dc.date.issued2012
dc.identifier.citationPowder Technology. 2012, 228 69-83.nb_NO
dc.identifier.issn0032-5910
dc.identifier.urihttp://hdl.handle.net/11250/2468949
dc.description.abstractTwo approaches to modelling fluidized bed reactors were evaluated and compared in this work: a phenomenological 1D approach based on empirical closures and a more fundamental 2D approach based on computational fluid dynamics (CFD). The fundamental modelling approach should be more accurate and generic, but is several orders of magnitude more computationally expensive than the phenomenological approach. Therefore, the development of accurate, but computationally affordable phenomenological models is a matter of great importance. This work evaluated the behaviour of both modelling approaches over a wide range of operating variables spanning the bubbling fluidization regime. These variables included fluidization velocity, bed height, operating temperature and particle size. Several different closure models were evaluated for the phenomenological approach and it was shown that models for the bubble size, bubble-to-emulsion mass transfer coefficient and solids inside the bubble all have a significant impact on model performance. An optimal combination of closure models used in the phenomenological approach succeeded in providing a good match to data gathered from the more generic fundamental approach. The response of the model to changes in particle size was identified as the area with the greatest potential for further development. More detailed comparisons of axial distributions of important flow variables showed some differences between the predictions of the phenomenological and fundamental modelling approaches. In particular, the hydrodynamic measures of axial void distribution and bubble rise velocity predicted by these two approaches showed some significant differences.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleComparison of phenomenological and fundamental modelling approaches for predicting fluidized bed reactor performancenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber69-83nb_NO
dc.source.volume228nb_NO
dc.source.journalPowder Technologynb_NO
dc.identifier.doi10.1016/j.powtec.2012.04.063
dc.identifier.cristin948108
dc.relation.projectNorges forskningsråd: 197580nb_NO
dc.description.localcode© 2012. This is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal