Vis enkel innførsel

dc.contributor.authorShum, Andrew
dc.contributor.authorParkinson, Dilworth Y
dc.contributor.authorXiao, Xianghui
dc.contributor.authorWeber, Adam Z
dc.contributor.authorBurheim, Odne Stokke
dc.contributor.authorZenyuk, Iryna V.
dc.date.accessioned2017-11-14T07:55:02Z
dc.date.available2017-11-14T07:55:02Z
dc.date.created2017-11-08T15:55:35Z
dc.date.issued2017
dc.identifier.citationElectrochimica Acta. 2017, 256 279-290.nb_NO
dc.identifier.issn0013-4686
dc.identifier.urihttp://hdl.handle.net/11250/2466035
dc.description.abstractThe performance of polymer‐electrolyte fuel cells is heavily dependent on proper management of liquid water. One particular reason is that liquid water can collect in the gas diffusion layers (GDLs) blocking the reactant flow to the catalyst layer. This results in increased mass‐transport losses. At higher temperatures, evaporation of water becomes a dominant water‐removal mechanism and specifically phase‐change‐induced (PCI) flow is present due to thermal gradients. This study used synchrotron based micro X‐ray computed tomography (CT) to visualize and quantify the water distribution within gas diffusion layers subject to a thermal gradient. Plotting saturation as a function of through‐plane distance quantitatively shows water redistribution, where water evaporates at hotter locations and condenses in colder locations. The morphology of the GDLs on the micro‐scale, as well as evaporating water clusters, are resolved, indicating that the GDL voids are slightly prolate, whereas water clusters are oblate. From the mean radii of water distributions and visual inspection, it is observed that larger water clusters evaporate faster than smaller ones.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleInvestigating Phase-Change-Induced Flow in Gas Diffusion Layers in Fuel Cells with X-ray Computed Tomographynb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber279-290nb_NO
dc.source.volume256nb_NO
dc.source.journalElectrochimica Actanb_NO
dc.identifier.doi10.1016/j.electacta.2017.10.012
dc.identifier.cristin1512328
dc.description.localcodeThis is the authors' accepted and refereed manuscript to the article. Locked until 1 December 2019 due to copyright restrictions.nb_NO
cristin.unitcode194,64,25,0
cristin.unitnameInstitutt for energi- og prosessteknikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal