Vis enkel innførsel

dc.contributor.authorVilamosa, Vincent
dc.contributor.authorClausen, Arild Holm
dc.contributor.authorBørvik, Tore
dc.contributor.authorHolmedal, Bjørn
dc.contributor.authorHopperstad, Odd Sture
dc.date.accessioned2017-11-08T12:11:55Z
dc.date.available2017-11-08T12:11:55Z
dc.date.created2016-07-04T12:30:08Z
dc.date.issued2016
dc.identifier.citationMaterials & design. 2016, 103 391-405.nb_NO
dc.identifier.issn0264-1275
dc.identifier.urihttp://hdl.handle.net/11250/2464936
dc.description.abstractThis paper presents a physically-based constitutive model applied to an AA6082 aluminium alloy subjected to large strains, high strain rates and elevated temperatures. The model accounts for thermo-elasticity, thermo-viscoplasticity, and strain-rate and temperature dependent work hardening, using the dislocation density as an internal variable without relating it to a detailed characterization of the microstructure evolution. The parameter identification is based on previously reported experimental results from quasi-static and dynamic tensile tests performed at temperatures from 20 to 350 °C. The equivalent stress-strain curves were determined beyond necking by monitoring the cylindrical specimens with a digital camera and applying the Bridgman correction to account for the triaxial stress state. The results revealed a distinct increase of the work hardening at high strain rates, indicating a change of strengthening mechanism. A new formulation for the dynamic recovery provided reasonable predictions over the considered range of strains, strain rates and temperatures. Finite element simulations of the quasi-static and dynamic tensile tests were made to assess the accuracy of the Bridgman correction. The simulations reproduced the complex behaviour observed in the tests and validated the constitutive model and the associated parameter identification procedures in the entire range of strains, strain rates and temperatures investigated.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleA physically-based constitutive model applied to AA6082 aluminium alloy at large strains, high strain rates and elevated temperaturesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber391-405nb_NO
dc.source.volume103nb_NO
dc.source.journalMaterials & designnb_NO
dc.identifier.doi10.1016/j.matdes.2016.04.047
dc.identifier.cristin1365962
dc.relation.projectNorges forskningsråd: 237885nb_NO
dc.description.localcode© 2016. This is the authors’ accepted and refereed manuscript to the article. LOCKED until 18.4.2018 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/nb_NO
cristin.unitcode194,64,45,0
cristin.unitcode194,66,35,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.unitnameInstitutt for materialteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal