• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Boundedness Property of the Inertia Matrix and Skew-Symmetric Property of the Coriolis Matrix for Vehicle-Manipulator Systems

From, Pål Johan; Schjølberg, Ingrid; Gravdahl, Jan Tommy; Pettersen, Kristin Ytterstad; Fossen, Thor I.
Journal article, Peer reviewed
Accepted version
View/Open
From_ASME_2012.pdf (Locked)
URI
http://hdl.handle.net/11250/2463618
Date
2012
Metadata
Show full item record
Collections
  • Institutt for teknisk kybernetikk [4103]
  • Publikasjoner fra CRIStin - NTNU [41955]
Original version
10.1115/1.4006077
Abstract
This paper addresses the boundedness property of the inertia matrix and the skew-symmetric property of the Coriolis matrix for vehicle-manipulator systems. These properties are widely used in control theory and Lyapunov-based stability proofs and thus important to identify. The skew-symmetric property does not depend on the system at hand but on the parameterization of the Coriolis matrix, which is not unique. It is the authors' experience that many researchers take this assumption for granted without taking into account that several parameterizations exist. In fact, most researchers refer to references that do not show this property for vehicle-manipulator systems but for other systems such as single rigid bodies or fixed-base manipulators. As a result, the otherwise rigorous stability proofs fall apart. In this paper, we list some relevant references and give the correct proofs for some commonly used parameterizations for future reference. Depending on the choice of state variables, the boundedness of the inertia matrix will not necessarily hold. We show that deriving the dynamics in terms of quasi-velocities leads to an inertia matrix that is bounded in its variables. To the best of our knowledge, we derive for the first time the dynamic equations of vehicle-manipulator systems with non-Euclidean joints for which both properties are true.
Publisher
American Society of Mechanical Engineers (ASME)
Journal
Journal of Dynamic Systems Measurement, and Control

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit