Vis enkel innførsel

dc.contributor.authorKlimentov, Dmitry
dc.contributor.authorTolstik, Nikolai
dc.contributor.authorDvoyrin, Vladislav V
dc.contributor.authorRichter, Roland Axel
dc.contributor.authorSorokina, Irina T
dc.date.accessioned2017-11-01T08:59:17Z
dc.date.available2017-11-01T08:59:17Z
dc.date.created2016-12-01T14:50:25Z
dc.date.issued2016
dc.identifier.citationJournal of Lightwave Technology. 2016, 34 (21), 4847-4855.nb_NO
dc.identifier.issn0733-8724
dc.identifier.urihttp://hdl.handle.net/11250/2463348
dc.description.abstractWe report the high-energy flat-top supercontinuum covering the midinfrared wavelength range of 1.9-2.5 μm as well as electronically tunable femtosecond pulses between 1.98 and 2.22 μm directly from the thulium-doped fiber laser amplifier. Comparison of experimental results with numerical simulations confirms that both sources employ the same nonlinear optical mechanism-Raman soliton frequency shift occurring inside the Tm-fiber amplifier. To illustrate that we investigate two versions of the compact diode-pumped SESAM modelocked femtosecond thulium-doped all-silica-fiber-based laser system providing either broadband supercontinuum or tunable Raman soliton output, depending on the parameters of the system. The first system operates in the Raman soliton regime providing femtosecond pulses tunable between 1.98 and 2.22 μm. Wide and continuous spectral tunability over 240 nm was realized by changing only the amplifier pump diode current. The second system generates high-energy supercontinuum with the superior spectral flatness of better than 1 dB covering the wavelength range of 1.9-2.5 μm, with the total output energy as high as 0.284 μJ, and the average power of 2.1 W at 7.5-MHz repetition rate. We simulate the amplifier operation in the Raman soliton self-frequency shift regime and discuss the role of induced Raman scattering in supercontinuum formation inside the fiber amplifier. We compare this system with a more traditional 1.85-2.53-μm supercontinuum source in the external highlynonlinear commercial chalcogenide fiber using the Raman soliton MOPA as an excitation source. The reported systems1 can be readily applied to a number of industrial applications in the mid-IR, including sensing, standoff detection, medical surgery, and fine material processing.nb_NO
dc.language.isoengnb_NO
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)nb_NO
dc.titleFlat-top supercontinuum and tunable femtosecond fiber laser sources at 1.9-2.5 μmnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber4847-4855nb_NO
dc.source.volume34nb_NO
dc.source.journalJournal of Lightwave Technologynb_NO
dc.source.issue21nb_NO
dc.identifier.doi10.1109/JLT.2016.2604039
dc.identifier.cristin1407238
dc.relation.projectNorges forskningsråd: 191614nb_NO
dc.relation.projectEC/FP7/618086nb_NO
dc.relation.projectNorges forskningsråd: 255003nb_NO
dc.relation.projectNorges forskningsråd: 219686nb_NO
dc.description.localcode© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel