Vis enkel innførsel

dc.contributor.authorJohnsen, Joakim
dc.contributor.authorHolmen, Jens Kristian
dc.contributor.authorMyhr, Ole Runar
dc.contributor.authorHopperstad, Odd Sture
dc.contributor.authorBørvik, Tore
dc.date.accessioned2017-10-26T13:41:39Z
dc.date.available2017-10-26T13:41:39Z
dc.date.created2013-11-21T14:17:51Z
dc.date.issued2013
dc.identifier.citationComputational materials science. 2013, 79 724-735.nb_NO
dc.identifier.issn0927-0256
dc.identifier.urihttp://hdl.handle.net/11250/2462419
dc.description.abstractFinite element simulations of AA6070 aluminium plates struck by ogival-nose projectiles are performed. The aluminium plates are 20 mm thick and heat treated to temper O, T4, T6 and T7. A nano-scale material model, consisting of three parts: a precipitation model, a yield-strength model and a work-hardening model, is used to predict the flow–stress curves of the materials at ambient temperature based on the chemical composition of the alloy and the thermal history defined by the heat treatment. Finite element simulations of the perforation process are then carried out using both 3D solid and 2D axisymmetric elements. The numerically-obtained ballistic limit velocities, predicted without any use of data from mechanical tests, are compared with available experimental data and found to be in good agreement with the experimental ones for all tempers. The same holds for the predicted residual velocities at striking velocities higher than the ballistic limits.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.titleA nano-scale material model applied in finite element analysis of aluminium plates under impact loadingnb_NO
dc.typeJournal articlenb_NO
dc.description.versionsubmittedVersionnb_NO
dc.source.pagenumber724-735nb_NO
dc.source.volume79nb_NO
dc.source.journalComputational materials sciencenb_NO
dc.identifier.doi10.1016/j.commatsci.2013.07.035
dc.identifier.cristin1067945
dc.relation.projectNorges forskningsråd: 174834nb_NO
dc.description.localcodeThis is a submitted manuscript of an article published by Elsevier Ltd in Computational Materials Science, 26 August 2013nb_NO
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel