Vis enkel innførsel

dc.contributor.authorBaghirov, Habib
dc.contributor.authorKaraman, Didem Sen
dc.contributor.authorViitala, Tapani
dc.contributor.authorDuchanoy, Alain
dc.contributor.authorLou, Yan-Ru
dc.contributor.authorMamaeva, Veronika
dc.contributor.authorPryazhnikov, Evgeny
dc.contributor.authorKhiroug, Leonard
dc.contributor.authorDavies, Ruth Catharina de Lange
dc.contributor.authorSahlgren, Cecilia
dc.contributor.authorRosenholm, Jessica M.
dc.date.accessioned2017-10-25T06:55:33Z
dc.date.available2017-10-25T06:55:33Z
dc.date.created2016-10-19T05:53:51Z
dc.date.issued2016
dc.identifier.citationPLoS ONE. 2016, 11 (8), .nb_NO
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11250/2461988
dc.description.abstractDrug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, strain II, were used as BBB models. We studied spherical and rod-shaped MSNs with the following modifications: bare MSNs and MSNs coated with a poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) block copolymer. In transport studies, MSNs showed low permeability, whereas the results of the cellular uptake studies suggest robust uptake of PEG-PEI-coated MSNs. None of the MSNs showed significant toxic effects in the cell viability studies. While the shape effect was detectable but small, especially in the real-time surface plasmon resonance measurements, coating with PEG-PEI copolymers clearly facilitated the uptake of MSNs. Finally, we evaluated the in vivo detectability of one of the best candidates, i.e. the copolymer-coated rod-shaped MSNs, by two-photon in vivo imaging in the brain vasculature. The particles were clearly detectable after intravenous injection and caused no damage to the BBB. Thus, when properly designed, the uptake of MSNs could potentially be utilized for the delivery of drugs into the brain via transcellular transport.nb_NO
dc.language.isoengnb_NO
dc.publisherPublic Library of Sciencenb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFeasibility study of the permeability and uptake of mesoporous silica nanoparticles across the blood-brain barriernb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber22nb_NO
dc.source.volume11nb_NO
dc.source.journalPLoS ONEnb_NO
dc.source.issue8nb_NO
dc.identifier.doi10.1371/journal.pone.0160705
dc.identifier.cristin1392785
dc.relation.projectNorges forskningsråd: 220005nb_NO
dc.description.localcode© 2016 Baghirov et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/)nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal